{"title":"二维宽禁带半导体石墨烯中应变致光学位移的DFT研究:光伏光电应用前景","authors":"B. Moustahssine, R. Masrour","doi":"10.1016/j.jpcs.2025.113251","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses density functional theory (DFT) to examine the effect of strain on the optical properties of graphone. Based on previous studies linking the band gap to the dielectric function (Zheng et al., 2017; Onishi and Fu, 2024), we propose that mechanical strain can be used to tune electronic and optical properties. The undeformed structure exhibits a indirect gap of <span><math><mrow><mn>4</mn><mo>.</mo><mn>21</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> with an absorption onset near <span><math><mrow><mn>4</mn><mo>.</mo><mn>21</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>. Tensile strain (<span><math><mrow><mo>+</mo><mn>30</mn><mtext>%</mtext></mrow></math></span>) reduces the gap to <span><math><mrow><mn>0</mn><mo>.</mo><mn>96</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> and shifts the main absorption peak from <span><math><mrow><mn>13</mn><mo>.</mo><mn>05</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>33</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>, eventually closing the gap and inducing a semiconductor-to-semimetal transition. Conversely, compressive strain (<span><math><mrow><mo>−</mo><mn>30</mn><mtext>%</mtext></mrow></math></span>) widens the gap to <span><math><mrow><mn>5</mn><mo>.</mo><mn>58</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>, pushing absorption into the ultraviolet. Strain also modifies the dielectric function: <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> increases by <span><math><mrow><mo>∼</mo><mn>18</mn><mtext>%</mtext></mrow></math></span> at low energies, while <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> exhibits a redshift. The absorption coefficient increases from <span><math><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, accompanied by a <span><math><mrow><mo>∼</mo><mn>12</mn><mtext>%</mtext></mrow></math></span> decrease in transmission. These findings highlight strain engineering as an effective strategy for tailoring graphone’s optical performance.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"209 ","pages":"Article 113251"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study of strain-induced optical shift in graphone, a 2D wide-bandgap semiconductor: Perspectives for photovoltaic and optoelectronic applications\",\"authors\":\"B. Moustahssine, R. Masrour\",\"doi\":\"10.1016/j.jpcs.2025.113251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study uses density functional theory (DFT) to examine the effect of strain on the optical properties of graphone. Based on previous studies linking the band gap to the dielectric function (Zheng et al., 2017; Onishi and Fu, 2024), we propose that mechanical strain can be used to tune electronic and optical properties. The undeformed structure exhibits a indirect gap of <span><math><mrow><mn>4</mn><mo>.</mo><mn>21</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> with an absorption onset near <span><math><mrow><mn>4</mn><mo>.</mo><mn>21</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>. Tensile strain (<span><math><mrow><mo>+</mo><mn>30</mn><mtext>%</mtext></mrow></math></span>) reduces the gap to <span><math><mrow><mn>0</mn><mo>.</mo><mn>96</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> and shifts the main absorption peak from <span><math><mrow><mn>13</mn><mo>.</mo><mn>05</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>33</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>, eventually closing the gap and inducing a semiconductor-to-semimetal transition. Conversely, compressive strain (<span><math><mrow><mo>−</mo><mn>30</mn><mtext>%</mtext></mrow></math></span>) widens the gap to <span><math><mrow><mn>5</mn><mo>.</mo><mn>58</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>, pushing absorption into the ultraviolet. Strain also modifies the dielectric function: <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> increases by <span><math><mrow><mo>∼</mo><mn>18</mn><mtext>%</mtext></mrow></math></span> at low energies, while <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> exhibits a redshift. The absorption coefficient increases from <span><math><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, accompanied by a <span><math><mrow><mo>∼</mo><mn>12</mn><mtext>%</mtext></mrow></math></span> decrease in transmission. These findings highlight strain engineering as an effective strategy for tailoring graphone’s optical performance.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"209 \",\"pages\":\"Article 113251\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725007048\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725007048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究利用密度泛函理论(DFT)研究应变对石墨烯光学性质的影响。基于先前将带隙与介电函数联系起来的研究(Zheng et al., 2017; Onishi and Fu, 2024),我们提出机械应变可用于调整电子和光学特性。未变形结构表现出4.21eV的间接间隙,吸收开始于4.21eV附近。拉伸应变(+30%)使间隙减小到0.96eV,使主吸收峰从13.05eV移动到2.33eV,最终闭合间隙并诱导半导体到半金属的转变。相反,压缩应变(- 30%)使间隙扩大到5.58eV,推动吸收进入紫外线。应变也改变了介电函数:在低能时,ε 1(ω)增加了~ 18%,而ε 2(ω)表现出红移。吸收系数从4.5×105cm−1增加到5.9×105cm−1,同时透射率降低~ 12%。这些发现强调应变工程是定制石墨烯光学性能的有效策略。
DFT study of strain-induced optical shift in graphone, a 2D wide-bandgap semiconductor: Perspectives for photovoltaic and optoelectronic applications
This study uses density functional theory (DFT) to examine the effect of strain on the optical properties of graphone. Based on previous studies linking the band gap to the dielectric function (Zheng et al., 2017; Onishi and Fu, 2024), we propose that mechanical strain can be used to tune electronic and optical properties. The undeformed structure exhibits a indirect gap of with an absorption onset near . Tensile strain () reduces the gap to and shifts the main absorption peak from to , eventually closing the gap and inducing a semiconductor-to-semimetal transition. Conversely, compressive strain () widens the gap to , pushing absorption into the ultraviolet. Strain also modifies the dielectric function: increases by at low energies, while exhibits a redshift. The absorption coefficient increases from to , accompanied by a decrease in transmission. These findings highlight strain engineering as an effective strategy for tailoring graphone’s optical performance.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.