通过综合化学文库生成设计高电子亲和小分子受体

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mudassir Hussain Tahir , Sumaira Naeem , Ihab Mohamed Moussa
{"title":"通过综合化学文库生成设计高电子亲和小分子受体","authors":"Mudassir Hussain Tahir ,&nbsp;Sumaira Naeem ,&nbsp;Ihab Mohamed Moussa","doi":"10.1016/j.synthmet.2025.117986","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an advanced approach for crafting small molecule acceptors using data-driven techniques. Machine learning algorithms are developed to forecast these acceptors' electron affinities using chemical characteristics. A pre-trained machine learning model is used to evaluate the electron affinity of 10,000 small molecule acceptors. Acceptors with higher electron affinity are prioritized for selection and their synthetic feasibility is subsequently evaluated. Furthermore, structural diversity of the chosen acceptors is investigated, it uncovered structural diversity among chosen small molecule acceptors. These methods effectively identify and refine new small molecule acceptors, promising significant advancements in material discovery for various applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"316 ","pages":"Article 117986"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing high electron affinity small molecule acceptors through comprehensive chemical library generation\",\"authors\":\"Mudassir Hussain Tahir ,&nbsp;Sumaira Naeem ,&nbsp;Ihab Mohamed Moussa\",\"doi\":\"10.1016/j.synthmet.2025.117986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an advanced approach for crafting small molecule acceptors using data-driven techniques. Machine learning algorithms are developed to forecast these acceptors' electron affinities using chemical characteristics. A pre-trained machine learning model is used to evaluate the electron affinity of 10,000 small molecule acceptors. Acceptors with higher electron affinity are prioritized for selection and their synthetic feasibility is subsequently evaluated. Furthermore, structural diversity of the chosen acceptors is investigated, it uncovered structural diversity among chosen small molecule acceptors. These methods effectively identify and refine new small molecule acceptors, promising significant advancements in material discovery for various applications.</div></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"316 \",\"pages\":\"Article 117986\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677925001626\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925001626","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种使用数据驱动技术制作小分子受体的先进方法。开发了机器学习算法来利用化学特性预测这些受体的电子亲和力。使用预训练的机器学习模型来评估10,000个小分子受体的电子亲和力。优先选择具有较高电子亲和力的受体,并随后评估其合成可行性。此外,研究了所选受体的结构多样性,揭示了所选小分子受体之间的结构多样性。这些方法有效地识别和提炼新的小分子受体,有望在各种应用的材料发现方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing high electron affinity small molecule acceptors through comprehensive chemical library generation
This study presents an advanced approach for crafting small molecule acceptors using data-driven techniques. Machine learning algorithms are developed to forecast these acceptors' electron affinities using chemical characteristics. A pre-trained machine learning model is used to evaluate the electron affinity of 10,000 small molecule acceptors. Acceptors with higher electron affinity are prioritized for selection and their synthetic feasibility is subsequently evaluated. Furthermore, structural diversity of the chosen acceptors is investigated, it uncovered structural diversity among chosen small molecule acceptors. These methods effectively identify and refine new small molecule acceptors, promising significant advancements in material discovery for various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信