{"title":"孔隙形状和取向对各向异性多孔材料成形性能的影响","authors":"Muhammad Waqar Nasir , Shuraim Muzammil , Hocine Chalal , Farid Abed-Meraim","doi":"10.1016/j.ijmecsci.2025.110902","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"307 ","pages":"Article 110902"},"PeriodicalIF":9.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Void shape and orientation effects on anisotropic porous material formability\",\"authors\":\"Muhammad Waqar Nasir , Shuraim Muzammil , Hocine Chalal , Farid Abed-Meraim\",\"doi\":\"10.1016/j.ijmecsci.2025.110902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"307 \",\"pages\":\"Article 110902\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740325009841\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325009841","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Void shape and orientation effects on anisotropic porous material formability
This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.