孔隙形状和取向对各向异性多孔材料成形性能的影响

IF 9.4 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Muhammad Waqar Nasir , Shuraim Muzammil , Hocine Chalal , Farid Abed-Meraim
{"title":"孔隙形状和取向对各向异性多孔材料成形性能的影响","authors":"Muhammad Waqar Nasir ,&nbsp;Shuraim Muzammil ,&nbsp;Hocine Chalal ,&nbsp;Farid Abed-Meraim","doi":"10.1016/j.ijmecsci.2025.110902","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"307 ","pages":"Article 110902"},"PeriodicalIF":9.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Void shape and orientation effects on anisotropic porous material formability\",\"authors\":\"Muhammad Waqar Nasir ,&nbsp;Shuraim Muzammil ,&nbsp;Hocine Chalal ,&nbsp;Farid Abed-Meraim\",\"doi\":\"10.1016/j.ijmecsci.2025.110902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"307 \",\"pages\":\"Article 110902\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740325009841\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325009841","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了孔洞形状和孔洞取向对非二次各向异性多孔材料成形极限图(FLDs)的影响。本构框架将GLD (GLD)损伤模型与Barlat的YLD-2004-18p非二次屈服准则相结合,以捕获金属基体的塑性各向异性。结合GLD-YLD模型和Marciniak-Kuczyński (M-K)缺陷法,进一步预测各向异性薄板的FLDs。结果表明,孔洞形态对成形性能有很大影响,与扁圆孔洞(板状孔洞)相比,长形孔洞(针状孔洞)提高了材料的延展性,而球形孔洞则产生了一种中间行为。此外,研究还强调了材料取向对成形性的影响涉及多种因素的复杂相互作用,包括基体诱导和空洞形状诱导的各向异性、轧制方向与空洞取向的相对夹角以及空洞成核机制。通过两种铝合金的FLD实验数据,对模型的预测能力进行了评估。尽管由于孔隙率低,这些合金对空穴形貌仅表现出轻微的敏感性,但与未损伤的各向同性von Mises模型相比,空穴形状相关的GLD-YLD模型更好地捕捉了实验趋势,后者过度高估了FLD右侧的成形性。各向同性硬化的作用也得到了验证,结果表明,较高的硬化程度提高了成形性,并且在平衡双轴加载下,对扁形孔洞的影响最小。这些发现强调了在本构模型中结合损伤和基质诱导的各向异性对于准确预测FLD的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Void shape and orientation effects on anisotropic porous material formability

Void shape and orientation effects on anisotropic porous material formability
This study investigates the influence of void shape and orientation on the Forming Limit Diagrams (FLDs) of porous materials with non-quadratic anisotropy. The constitutive framework integrates the Gologanu–Leblond–Devaux (GLD) damage model, which accounts for void morphology, with Barlat’s YLD-2004-18p non-quadratic yield criterion to capture metal matrix plastic anisotropy. The combined GLD-YLD model is further coupled with the Marciniak–Kuczyński (M–K) imperfection approach to predict FLDs for anisotropic sheet metals. Results demonstrate that void morphology considerably affects formability, with prolate (needle-like) voids enhancing material ductility, as compared to oblate (plate-like) voids, while spherical voids yield an intermediate behavior. Furthermore, the study highlights that the impact of material orientation on formability involves a complex interplay of several factors, which include coupled matrix-induced and void-shape-induced anisotropy, the relative angle between the rolling direction and void orientation, and void nucleation mechanism. The model predictive capabilities are assessed against experimental FLD data for two aluminum alloys. Although these alloys show only slight sensitivity to void morphology, due to low porosity, the void shape-dependent anisotropic GLD-YLD model better captures the experimental trends as compared to the undamaged isotropic von Mises model, which overly overestimates formability on the right-hand side of FLD. The role of isotropic hardening is also examined, which shows that higher hardening improves formability, and the effect is smallest for oblate voids under balanced biaxial loading. These findings underscore the importance of incorporating both damage and matrix-induced anisotropy in constitutive modeling for accurate FLD prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信