利用拉曼光谱和机器学习预测地层盐水中CO2的原位溶解度:对海上地质碳储存的影响

IF 5.5 0 ENERGY & FUELS
Ying Teng , Yiqi Chen , Xiran Lin , Mingkun Bai , Senyou An , Shuyang Liu , Pengfei Wang , Tao Zhang , Songbai Han , Jinlong Zhu , Jianbo Zhu , Heping Xie
{"title":"利用拉曼光谱和机器学习预测地层盐水中CO2的原位溶解度:对海上地质碳储存的影响","authors":"Ying Teng ,&nbsp;Yiqi Chen ,&nbsp;Xiran Lin ,&nbsp;Mingkun Bai ,&nbsp;Senyou An ,&nbsp;Shuyang Liu ,&nbsp;Pengfei Wang ,&nbsp;Tao Zhang ,&nbsp;Songbai Han ,&nbsp;Jinlong Zhu ,&nbsp;Jianbo Zhu ,&nbsp;Heping Xie","doi":"10.1016/j.jgsce.2025.205794","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of in-situ CO<sub>2</sub> solubility in brine is essential for predicting dissolution trapping efficiency and ensuring the long-term security of geological carbon storage, particularly in deep saline aquifers and offshore reservoirs. Existing experimental and thermodynamic approaches often suffer from limited applicability under high salinity, multi-ion conditions, and diverse reservoir environments, leading to substantial prediction uncertainties. To address this gap, we experimentally determined CO<sub>2</sub> solubility using Raman spectroscopy in both formation brines and synthetic brines under reservoir-relevant conditions (313.15–363.15 K, 7.5–17 MPa) and compiled a comprehensive dataset of 2733 literature entries covering wide salinity and ionic composition ranges. Six machine learning algorithms—LightGBM, XGBoost, CatBoost, SVR, ELM, and KNN—were trained and benchmarked, with LightGBM achieving the highest predictive accuracy. SHAP analysis revealed that pressure, total salinity, and temperature were the dominant factors governing solubility. Model applicability and reliability were confirmed through leverage statistics and Williams plots. Compared with a thermodynamic model, LightGBM delivered superior performance, especially under high-salinity conditions where conventional models often underpredict solubility. The resulting data-driven framework can be readily integrated into reservoir simulation workflows to enable rapid, accurate solubility predictions, optimize injection strategies, and enhance risk assessment for CCS projects in complex geological settings.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"145 ","pages":"Article 205794"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting in-situ CO2 solubility in formation brines using Raman spectroscopy and machine learning: Implications for offshore geological carbon storage\",\"authors\":\"Ying Teng ,&nbsp;Yiqi Chen ,&nbsp;Xiran Lin ,&nbsp;Mingkun Bai ,&nbsp;Senyou An ,&nbsp;Shuyang Liu ,&nbsp;Pengfei Wang ,&nbsp;Tao Zhang ,&nbsp;Songbai Han ,&nbsp;Jinlong Zhu ,&nbsp;Jianbo Zhu ,&nbsp;Heping Xie\",\"doi\":\"10.1016/j.jgsce.2025.205794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate estimation of in-situ CO<sub>2</sub> solubility in brine is essential for predicting dissolution trapping efficiency and ensuring the long-term security of geological carbon storage, particularly in deep saline aquifers and offshore reservoirs. Existing experimental and thermodynamic approaches often suffer from limited applicability under high salinity, multi-ion conditions, and diverse reservoir environments, leading to substantial prediction uncertainties. To address this gap, we experimentally determined CO<sub>2</sub> solubility using Raman spectroscopy in both formation brines and synthetic brines under reservoir-relevant conditions (313.15–363.15 K, 7.5–17 MPa) and compiled a comprehensive dataset of 2733 literature entries covering wide salinity and ionic composition ranges. Six machine learning algorithms—LightGBM, XGBoost, CatBoost, SVR, ELM, and KNN—were trained and benchmarked, with LightGBM achieving the highest predictive accuracy. SHAP analysis revealed that pressure, total salinity, and temperature were the dominant factors governing solubility. Model applicability and reliability were confirmed through leverage statistics and Williams plots. Compared with a thermodynamic model, LightGBM delivered superior performance, especially under high-salinity conditions where conventional models often underpredict solubility. The resulting data-driven framework can be readily integrated into reservoir simulation workflows to enable rapid, accurate solubility predictions, optimize injection strategies, and enhance risk assessment for CCS projects in complex geological settings.</div></div>\",\"PeriodicalId\":100568,\"journal\":{\"name\":\"Gas Science and Engineering\",\"volume\":\"145 \",\"pages\":\"Article 205794\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949908925002584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确估计盐水中CO2的原位溶解度对于预测溶解捕获效率和确保地质碳储存的长期安全至关重要,特别是在深层咸水层和海上储层中。现有的实验和热力学方法在高盐度、多离子条件和不同的储层环境下的适用性有限,导致预测存在很大的不确定性。为了解决这一空白,我们在油藏相关条件下(313.15-363.15 K, 7.5-17 MPa),利用拉曼光谱实验测定了地层盐水和合成盐水中的CO2溶解度,并编制了2733个文献条目的综合数据集,涵盖了广泛的盐度和离子组成范围。六种机器学习算法- LightGBM, XGBoost, CatBoost, SVR, ELM和knn -进行了训练和基准测试,其中LightGBM达到了最高的预测精度。SHAP分析显示,压力、总盐度和温度是影响溶解度的主要因素。通过杠杆统计和Williams图验证了模型的适用性和可靠性。与热力学模型相比,LightGBM具有更好的性能,特别是在高盐度条件下,常规模型往往无法预测溶解度。由此产生的数据驱动框架可以很容易地集成到油藏模拟工作流程中,从而实现快速、准确的溶解度预测,优化注入策略,并增强复杂地质环境下CCS项目的风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting in-situ CO2 solubility in formation brines using Raman spectroscopy and machine learning: Implications for offshore geological carbon storage
Accurate estimation of in-situ CO2 solubility in brine is essential for predicting dissolution trapping efficiency and ensuring the long-term security of geological carbon storage, particularly in deep saline aquifers and offshore reservoirs. Existing experimental and thermodynamic approaches often suffer from limited applicability under high salinity, multi-ion conditions, and diverse reservoir environments, leading to substantial prediction uncertainties. To address this gap, we experimentally determined CO2 solubility using Raman spectroscopy in both formation brines and synthetic brines under reservoir-relevant conditions (313.15–363.15 K, 7.5–17 MPa) and compiled a comprehensive dataset of 2733 literature entries covering wide salinity and ionic composition ranges. Six machine learning algorithms—LightGBM, XGBoost, CatBoost, SVR, ELM, and KNN—were trained and benchmarked, with LightGBM achieving the highest predictive accuracy. SHAP analysis revealed that pressure, total salinity, and temperature were the dominant factors governing solubility. Model applicability and reliability were confirmed through leverage statistics and Williams plots. Compared with a thermodynamic model, LightGBM delivered superior performance, especially under high-salinity conditions where conventional models often underpredict solubility. The resulting data-driven framework can be readily integrated into reservoir simulation workflows to enable rapid, accurate solubility predictions, optimize injection strategies, and enhance risk assessment for CCS projects in complex geological settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信