锂基Li2BH6 (B = Pt, Pd, Ni)无铅钙钛矿氢化物的储氢和光电子性质:第一性原理研究

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
J. Islah , E. Darkaoui , A. Abbassi , S. Taj , B. Manaut , H. Ez-Zahraouy
{"title":"锂基Li2BH6 (B = Pt, Pd, Ni)无铅钙钛矿氢化物的储氢和光电子性质:第一性原理研究","authors":"J. Islah ,&nbsp;E. Darkaoui ,&nbsp;A. Abbassi ,&nbsp;S. Taj ,&nbsp;B. Manaut ,&nbsp;H. Ez-Zahraouy","doi":"10.1016/j.est.2025.118707","DOIUrl":null,"url":null,"abstract":"<div><div>Hydride perovskites have emerged as promising materials for solid-state hydrogen storage due to their structural flexibility and high hydrogen content. In this work, we investigate the effect of substituting Pt with Pd and Ni in the well-known cubic perovskite <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PtH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, forming a series of <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>BH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (B = Pt, Pd, Ni) perovskite-type hydrides. Using first-principles density functional theory calculations, we examine their structural, thermodynamic, dynamic, mechanical, hydrogen storage, and optoelectronic properties. Our results confirm that all three compounds are structurally stable and satisfy thermodynamic, dynamic, and mechanical stability criteria. They exhibit high volumetric hydrogen capacities exceeding the DOE target of 40 g H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/L, with gravimetric capacities increasing from 2.8 wt% in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PtH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> to 7.7 wt% in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Moreover, the hydrogen desorption temperatures decrease significantly, from 816 K in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PtH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> to 467 K in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and 424 K in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PdH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, indicating enhanced release performance suitable for moderate-temperature polymer electrolyte membrane (PEM) fuel cell hydrogen storage. Electronic structure analysis reveals that all compounds are wide-bandgap semiconductors, making them promising for optoelectronic and energy conversion applications. Optical properties show strong absorption ( <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> cm<sup>−1</sup>) across the UV–Vis spectrum, particularly in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PdH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, with absorption edges shifting toward the visible region. These findings position <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>BH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> perovskites as lead-free, mechanically robust candidates with promising dual functionality for hydrogen storage and optoelectronic applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"138 ","pages":"Article 118707"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen storage and optoelectronic properties of lithium-based Li2BH6 (B = Pt, Pd, Ni) free-lead perovskite hydrides: A first-principles investigation\",\"authors\":\"J. Islah ,&nbsp;E. Darkaoui ,&nbsp;A. Abbassi ,&nbsp;S. Taj ,&nbsp;B. Manaut ,&nbsp;H. Ez-Zahraouy\",\"doi\":\"10.1016/j.est.2025.118707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydride perovskites have emerged as promising materials for solid-state hydrogen storage due to their structural flexibility and high hydrogen content. In this work, we investigate the effect of substituting Pt with Pd and Ni in the well-known cubic perovskite <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PtH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, forming a series of <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>BH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (B = Pt, Pd, Ni) perovskite-type hydrides. Using first-principles density functional theory calculations, we examine their structural, thermodynamic, dynamic, mechanical, hydrogen storage, and optoelectronic properties. Our results confirm that all three compounds are structurally stable and satisfy thermodynamic, dynamic, and mechanical stability criteria. They exhibit high volumetric hydrogen capacities exceeding the DOE target of 40 g H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/L, with gravimetric capacities increasing from 2.8 wt% in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PtH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> to 7.7 wt% in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Moreover, the hydrogen desorption temperatures decrease significantly, from 816 K in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PtH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> to 467 K in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and 424 K in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PdH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, indicating enhanced release performance suitable for moderate-temperature polymer electrolyte membrane (PEM) fuel cell hydrogen storage. Electronic structure analysis reveals that all compounds are wide-bandgap semiconductors, making them promising for optoelectronic and energy conversion applications. Optical properties show strong absorption ( <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> cm<sup>−1</sup>) across the UV–Vis spectrum, particularly in <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>PdH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, with absorption edges shifting toward the visible region. These findings position <span><math><mrow><msub><mrow><mi>Li</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>BH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> perovskites as lead-free, mechanically robust candidates with promising dual functionality for hydrogen storage and optoelectronic applications.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"138 \",\"pages\":\"Article 118707\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25034206\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25034206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氢化物钙钛矿因其结构灵活、含氢量高而成为固态储氢材料。在这项工作中,我们研究了在众所周知的立方钙钛矿Li2PtH6中用Pd和Ni取代Pt的效果,形成了一系列Li2BH6 (B = Pt, Pd, Ni)钙钛矿型氢化物。利用第一性原理密度泛函理论计算,我们研究了它们的结构、热力学、动力学、力学、储氢和光电子特性。我们的研究结果证实了这三种化合物都是结构稳定的,并且满足热力学、动力学和机械稳定性标准。它们表现出超过DOE目标40 g H2/L的高体积氢容量,重量容量从Li2PtH6的2.8 wt%增加到Li2NiH6的7.7 wt%。此外,氢的解吸温度显著降低,从Li2PtH6的816 K降至Li2NiH6的467 K和Li2PdH6的424 K,表明释放性能增强,适合于中温聚合物电解质膜(PEM)燃料电池储氢。电子结构分析表明,所有化合物都是宽禁带半导体,使它们具有光电子和能量转换应用的前景。光学性质表明,Li2PdH6和Li2NiH6在紫外-可见光谱中有很强的吸收(106 cm−1),吸收边缘向可见光区移动。这些发现将Li2BH6钙钛矿定位为无铅、机械坚固的候选者,在储氢和光电子应用方面具有良好的双重功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen storage and optoelectronic properties of lithium-based Li2BH6 (B = Pt, Pd, Ni) free-lead perovskite hydrides: A first-principles investigation
Hydride perovskites have emerged as promising materials for solid-state hydrogen storage due to their structural flexibility and high hydrogen content. In this work, we investigate the effect of substituting Pt with Pd and Ni in the well-known cubic perovskite Li2PtH6, forming a series of Li2BH6 (B = Pt, Pd, Ni) perovskite-type hydrides. Using first-principles density functional theory calculations, we examine their structural, thermodynamic, dynamic, mechanical, hydrogen storage, and optoelectronic properties. Our results confirm that all three compounds are structurally stable and satisfy thermodynamic, dynamic, and mechanical stability criteria. They exhibit high volumetric hydrogen capacities exceeding the DOE target of 40 g H2/L, with gravimetric capacities increasing from 2.8 wt% in Li2PtH6 to 7.7 wt% in Li2NiH6. Moreover, the hydrogen desorption temperatures decrease significantly, from 816 K in Li2PtH6 to 467 K in Li2NiH6 and 424 K in Li2PdH6, indicating enhanced release performance suitable for moderate-temperature polymer electrolyte membrane (PEM) fuel cell hydrogen storage. Electronic structure analysis reveals that all compounds are wide-bandgap semiconductors, making them promising for optoelectronic and energy conversion applications. Optical properties show strong absorption ( 106 cm−1) across the UV–Vis spectrum, particularly in Li2PdH6 and Li2NiH6, with absorption edges shifting toward the visible region. These findings position Li2BH6 perovskites as lead-free, mechanically robust candidates with promising dual functionality for hydrogen storage and optoelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信