高雷诺数涡旋波纹振荡流动的实验与大涡模拟

IF 4.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Weikai Tan , Jing Yuan , Deping Cao , Asim Önder
{"title":"高雷诺数涡旋波纹振荡流动的实验与大涡模拟","authors":"Weikai Tan ,&nbsp;Jing Yuan ,&nbsp;Deping Cao ,&nbsp;Asim Önder","doi":"10.1016/j.coastaleng.2025.104881","DOIUrl":null,"url":null,"abstract":"<div><div>Long-crested sand ripples are ubiquitous seabed features in shallow coastal environments, characterized by the alternating generation of spanwise coherent vortices (SCVs) on either side of ripple crests. While previous studies have elucidated SCV dynamics at moderate Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>), a range that is common at many beaches and can persist for long wave periods. Nonetheless, their applicability to higher Reynolds number conditions (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) remains uncertain. This investigation combines wall-modeled large eddy simulations (WMLES) and oscillating water tunnel experiments to examine SCV formation at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>). The WMLES approach employs a logarithmic wall model for rough surfaces, achieving accurate SCV representation with computational efficiency. Experimental validation demonstrates good agreement in both phase-averaged flow fields and turbulence statistics, confirming the model’s fidelity. Key findings reveal a Reynolds number dependence analogous to the drag crisis phenomenon: SCV intensity diminishes significantly for smooth ripples at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, while surface roughness preserves vortex coherence. Our analysis of numerical results uncovers a positive feedback mechanism governing SCV development, where the residual SCV from the preceding half-cycle promotes early flow separation at ripple crests, facilitating vorticity accumulation and subsequent SCV formation. Analysis of the initial-cycle simulation (starting from a quiescent initial condition) shows that lee-side boundary layer must separate intrinsically during the deceleration phases of the first half-cycle to initiate this positive feedback loop. Both low Reynolds numbers and surface roughness can contribute to this first-half-cycle separation by increasing momentum deficit in the lee-side boundary layer.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"204 ","pages":"Article 104881"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiments and large eddy simulations of oscillatory flow over vortex ripples at high Reynolds number\",\"authors\":\"Weikai Tan ,&nbsp;Jing Yuan ,&nbsp;Deping Cao ,&nbsp;Asim Önder\",\"doi\":\"10.1016/j.coastaleng.2025.104881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Long-crested sand ripples are ubiquitous seabed features in shallow coastal environments, characterized by the alternating generation of spanwise coherent vortices (SCVs) on either side of ripple crests. While previous studies have elucidated SCV dynamics at moderate Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>), a range that is common at many beaches and can persist for long wave periods. Nonetheless, their applicability to higher Reynolds number conditions (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>) remains uncertain. This investigation combines wall-modeled large eddy simulations (WMLES) and oscillating water tunnel experiments to examine SCV formation at high Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∼</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>). The WMLES approach employs a logarithmic wall model for rough surfaces, achieving accurate SCV representation with computational efficiency. Experimental validation demonstrates good agreement in both phase-averaged flow fields and turbulence statistics, confirming the model’s fidelity. Key findings reveal a Reynolds number dependence analogous to the drag crisis phenomenon: SCV intensity diminishes significantly for smooth ripples at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, while surface roughness preserves vortex coherence. Our analysis of numerical results uncovers a positive feedback mechanism governing SCV development, where the residual SCV from the preceding half-cycle promotes early flow separation at ripple crests, facilitating vorticity accumulation and subsequent SCV formation. Analysis of the initial-cycle simulation (starting from a quiescent initial condition) shows that lee-side boundary layer must separate intrinsically during the deceleration phases of the first half-cycle to initiate this positive feedback loop. Both low Reynolds numbers and surface roughness can contribute to this first-half-cycle separation by increasing momentum deficit in the lee-side boundary layer.</div></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"204 \",\"pages\":\"Article 104881\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383925001863\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925001863","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

长波峰沙纹是浅海环境中普遍存在的海底特征,其特征是在波峰两侧交替产生展向相干涡。虽然以前的研究已经阐明了中等雷诺数(Re≤104)下的SCV动力学,但这个范围在许多海滩上很常见,并且可以持续很长的波浪周期。尽管如此,它们对更高雷诺数条件(Re ~ 105)的适用性仍然不确定。这项研究结合了壁面模拟大涡模拟(WMLES)和振荡水洞实验来研究高雷诺数(Re ~ O(105))下SCV的形成。WMLES方法采用了粗糙表面的对数壁模型,以计算效率实现了精确的SCV表示。实验验证表明,相平均流场和湍流统计数据吻合良好,证实了模型的保真度。关键发现揭示了一种类似于阻力危机现象的雷诺数依赖性:在Re= 0(105)时,平滑波纹的SCV强度显著减弱,而表面粗糙度保持了涡相干性。我们对数值结果的分析揭示了控制SCV发展的正反馈机制,其中前半周期的残余SCV促进了纹波波峰处的早期流动分离,促进了涡量积累和随后的SCV形成。初始周期仿真分析(从静态初始条件出发)表明,在前半周期的减速阶段,背风面边界层必须本质分离才能启动该正反馈回路。低雷诺数和表面粗糙度都可以通过增加背风侧边界层的动量赤字来促进这种前半循环分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiments and large eddy simulations of oscillatory flow over vortex ripples at high Reynolds number
Long-crested sand ripples are ubiquitous seabed features in shallow coastal environments, characterized by the alternating generation of spanwise coherent vortices (SCVs) on either side of ripple crests. While previous studies have elucidated SCV dynamics at moderate Reynolds numbers (Re104), a range that is common at many beaches and can persist for long wave periods. Nonetheless, their applicability to higher Reynolds number conditions (Re105) remains uncertain. This investigation combines wall-modeled large eddy simulations (WMLES) and oscillating water tunnel experiments to examine SCV formation at high Reynolds numbers (ReO(105)). The WMLES approach employs a logarithmic wall model for rough surfaces, achieving accurate SCV representation with computational efficiency. Experimental validation demonstrates good agreement in both phase-averaged flow fields and turbulence statistics, confirming the model’s fidelity. Key findings reveal a Reynolds number dependence analogous to the drag crisis phenomenon: SCV intensity diminishes significantly for smooth ripples at Re=O(105), while surface roughness preserves vortex coherence. Our analysis of numerical results uncovers a positive feedback mechanism governing SCV development, where the residual SCV from the preceding half-cycle promotes early flow separation at ripple crests, facilitating vorticity accumulation and subsequent SCV formation. Analysis of the initial-cycle simulation (starting from a quiescent initial condition) shows that lee-side boundary layer must separate intrinsically during the deceleration phases of the first half-cycle to initiate this positive feedback loop. Both low Reynolds numbers and surface roughness can contribute to this first-half-cycle separation by increasing momentum deficit in the lee-side boundary layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信