高阶椭圆系统的Liouville型定理

IF 2.3 2区 数学 Q1 MATHEMATICS
Yating Xu , Huxiao Luo
{"title":"高阶椭圆系统的Liouville型定理","authors":"Yating Xu ,&nbsp;Huxiao Luo","doi":"10.1016/j.jde.2025.113823","DOIUrl":null,"url":null,"abstract":"<div><div>In the first part of this article, by the method of scaling spheres combined with some new iterative approach, we extend the Liouville type theorems <span><span>[2]</span></span>, <span><span>[3]</span></span> for higher order fractional Hénon-Lane-Emden systems to the general higher-order fractional elliptic systems<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>l</mi><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span></div><div>In the second part of this article, by a new iterative method, we prove that the super-harmonic property for the polyharmonic Hénon-Lane-Emden system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mtd></mtr></mtable></mrow></math></span></span></span> holds for all range <span><math><mi>q</mi><mo>,</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn></math></span>. Therefore, we extends the Liouville type theorem in <span><span>[24]</span></span> to full range<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><mi>q</mi><mo>,</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mi>n</mi><mo>+</mo><mi>a</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&gt;</mo><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span></div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113823"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville type theorems for higher order elliptic systems\",\"authors\":\"Yating Xu ,&nbsp;Huxiao Luo\",\"doi\":\"10.1016/j.jde.2025.113823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the first part of this article, by the method of scaling spheres combined with some new iterative approach, we extend the Liouville type theorems <span><span>[2]</span></span>, <span><span>[3]</span></span> for higher order fractional Hénon-Lane-Emden systems to the general higher-order fractional elliptic systems<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>l</mi><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span></div><div>In the second part of this article, by a new iterative method, we prove that the super-harmonic property for the polyharmonic Hénon-Lane-Emden system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mtd></mtr></mtable></mrow></math></span></span></span> holds for all range <span><math><mi>q</mi><mo>,</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn></math></span>. Therefore, we extends the Liouville type theorem in <span><span>[24]</span></span> to full range<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><mi>q</mi><mo>,</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mi>n</mi><mo>+</mo><mi>a</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&gt;</mo><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113823\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008502\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文的第一部分中,我们利用标度球的方法结合一些新的迭代方法,将高阶分数阶h - lane - emden系统的Liouville型定理[2],[3]推广到一般的高阶分数阶椭圆系统{(−Δ)k+α2u=|x|aupvq,x∈Rn,(−Δ)l+β2v=|x|burvs,x∈Rn。在本文的第二部分,我们用一种新的迭代方法证明了多谐h - lane - emden系统{(−Δ)mu=|x|avq,x∈Rn,(−Δ)mv=|x|bur,x∈Rn在所有q,r>;0范围内都成立的超调和性质。因此,我们将[24]中的Liouville型定理推广到满量程{q,r>0,n+aq+1+n+br+1>n−2m,ifm<n2,0<q,r<+∞,ifm=n2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville type theorems for higher order elliptic systems
In the first part of this article, by the method of scaling spheres combined with some new iterative approach, we extend the Liouville type theorems [2], [3] for higher order fractional Hénon-Lane-Emden systems to the general higher-order fractional elliptic systems{(Δ)k+α2u=|x|aupvq,xRn,(Δ)l+β2v=|x|burvs,xRn.
In the second part of this article, by a new iterative method, we prove that the super-harmonic property for the polyharmonic Hénon-Lane-Emden system{(Δ)mu=|x|avq,xRn,(Δ)mv=|x|bur,xRn holds for all range q,r>0. Therefore, we extends the Liouville type theorem in [24] to full range{q,r>0,n+aq+1+n+br+1>n2m,ifm<n2,0<q,r<+,ifm=n2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信