{"title":"高阶椭圆系统的Liouville型定理","authors":"Yating Xu , Huxiao Luo","doi":"10.1016/j.jde.2025.113823","DOIUrl":null,"url":null,"abstract":"<div><div>In the first part of this article, by the method of scaling spheres combined with some new iterative approach, we extend the Liouville type theorems <span><span>[2]</span></span>, <span><span>[3]</span></span> for higher order fractional Hénon-Lane-Emden systems to the general higher-order fractional elliptic systems<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>l</mi><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span></div><div>In the second part of this article, by a new iterative method, we prove that the super-harmonic property for the polyharmonic Hénon-Lane-Emden system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mtd></mtr></mtable></mrow></math></span></span></span> holds for all range <span><math><mi>q</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>0</mn></math></span>. Therefore, we extends the Liouville type theorem in <span><span>[24]</span></span> to full range<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><mi>q</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mi>n</mi><mo>+</mo><mi>a</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>></mo><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mn>0</mn><mo><</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo><</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span></div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113823"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville type theorems for higher order elliptic systems\",\"authors\":\"Yating Xu , Huxiao Luo\",\"doi\":\"10.1016/j.jde.2025.113823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the first part of this article, by the method of scaling spheres combined with some new iterative approach, we extend the Liouville type theorems <span><span>[2]</span></span>, <span><span>[3]</span></span> for higher order fractional Hénon-Lane-Emden systems to the general higher-order fractional elliptic systems<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>+</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>l</mi><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span></div><div>In the second part of this article, by a new iterative method, we prove that the super-harmonic property for the polyharmonic Hénon-Lane-Emden system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>a</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>v</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>b</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mtd></mtr></mtable></mrow></math></span></span></span> holds for all range <span><math><mi>q</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>0</mn></math></span>. Therefore, we extends the Liouville type theorem in <span><span>[24]</span></span> to full range<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mspace></mspace></mtd><mtd><mi>q</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mi>n</mi><mo>+</mo><mi>a</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>></mo><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mn>0</mn><mo><</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo><</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>m</mi><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113823\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008502\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文的第一部分中,我们利用标度球的方法结合一些新的迭代方法,将高阶分数阶h - lane - emden系统的Liouville型定理[2],[3]推广到一般的高阶分数阶椭圆系统{(−Δ)k+α2u=|x|aupvq,x∈Rn,(−Δ)l+β2v=|x|burvs,x∈Rn。在本文的第二部分,我们用一种新的迭代方法证明了多谐h - lane - emden系统{(−Δ)mu=|x|avq,x∈Rn,(−Δ)mv=|x|bur,x∈Rn在所有q,r>;0范围内都成立的超调和性质。因此,我们将[24]中的Liouville型定理推广到满量程{q,r>0,n+aq+1+n+br+1>n−2m,ifm<n2,0<q,r<+∞,ifm=n2。
Liouville type theorems for higher order elliptic systems
In the first part of this article, by the method of scaling spheres combined with some new iterative approach, we extend the Liouville type theorems [2], [3] for higher order fractional Hénon-Lane-Emden systems to the general higher-order fractional elliptic systems
In the second part of this article, by a new iterative method, we prove that the super-harmonic property for the polyharmonic Hénon-Lane-Emden system holds for all range . Therefore, we extends the Liouville type theorem in [24] to full range
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics