肿瘤血管生成非线性PDE模型的IMEX格式

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Pasquale De Luca, Livia Marcellino
{"title":"肿瘤血管生成非线性PDE模型的IMEX格式","authors":"Pasquale De Luca,&nbsp;Livia Marcellino","doi":"10.1016/j.cam.2025.117139","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a numerical analysis of an Implicit–Explicit scheme for a non-linear parabolic PDE model of tumor angiogenesis. The model describes the evolution of endothelial cells, proteases, inhibitors, and extracellular matrix through coupled equations incorporating diffusion, chemotaxis, haptotaxis, and reaction kinetics. We design a numerical approach that manages stiff linear terms implicitly while handling non-stiff nonlinear terms explicitly. Theoretical analysis establishes main features of the scheme such as stability properties, second-order convergence, and preservation of conservation laws. Moreover, the computational complexity is analyzed, demonstrating an efficiency gains compared to fully explicit methods. Numerical experiments validate these findings and show the ability of the method to accurately capture complex biological phenomena.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117139"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An IMEX scheme for a nonlinear PDE model of tumor angiogenesis\",\"authors\":\"Pasquale De Luca,&nbsp;Livia Marcellino\",\"doi\":\"10.1016/j.cam.2025.117139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a numerical analysis of an Implicit–Explicit scheme for a non-linear parabolic PDE model of tumor angiogenesis. The model describes the evolution of endothelial cells, proteases, inhibitors, and extracellular matrix through coupled equations incorporating diffusion, chemotaxis, haptotaxis, and reaction kinetics. We design a numerical approach that manages stiff linear terms implicitly while handling non-stiff nonlinear terms explicitly. Theoretical analysis establishes main features of the scheme such as stability properties, second-order convergence, and preservation of conservation laws. Moreover, the computational complexity is analyzed, demonstrating an efficiency gains compared to fully explicit methods. Numerical experiments validate these findings and show the ability of the method to accurately capture complex biological phenomena.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117139\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725006533\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文对肿瘤血管生成非线性抛物型PDE模型的隐显格式进行了数值分析。该模型通过结合扩散、趋化性、趋合性和反应动力学的耦合方程描述了内皮细胞、蛋白酶、抑制剂和细胞外基质的进化。我们设计了一种隐式管理刚性线性项而显式处理非刚性非线性项的数值方法。理论分析确立了该方案的稳定性、二阶收敛性和守恒性等主要特征。此外,分析了计算复杂度,与完全显式方法相比,证明了效率的提高。数值实验验证了这些发现,并表明该方法能够准确捕捉复杂的生物现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An IMEX scheme for a nonlinear PDE model of tumor angiogenesis
This paper presents a numerical analysis of an Implicit–Explicit scheme for a non-linear parabolic PDE model of tumor angiogenesis. The model describes the evolution of endothelial cells, proteases, inhibitors, and extracellular matrix through coupled equations incorporating diffusion, chemotaxis, haptotaxis, and reaction kinetics. We design a numerical approach that manages stiff linear terms implicitly while handling non-stiff nonlinear terms explicitly. Theoretical analysis establishes main features of the scheme such as stability properties, second-order convergence, and preservation of conservation laws. Moreover, the computational complexity is analyzed, demonstrating an efficiency gains compared to fully explicit methods. Numerical experiments validate these findings and show the ability of the method to accurately capture complex biological phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信