H(旋度)和H(div)平流问题的局部投影镇定方法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yangfan Luo , Jindong Wang , Shuonan Wu
{"title":"H(旋度)和H(div)平流问题的局部投影镇定方法","authors":"Yangfan Luo ,&nbsp;Jindong Wang ,&nbsp;Shuonan Wu","doi":"10.1016/j.cam.2025.117129","DOIUrl":null,"url":null,"abstract":"<div><div>We devise local projection stabilization (LPS) methods for advection problems in the <span><math><mi>H</mi></math></span>(curl) and <span><math><mi>H</mi></math></span>(div) spaces, employing conforming finite element spaces of arbitrary order within a unified framework. The key ingredient is a local inf–sup condition, enabled by enriching the approximation space with appropriate <span><math><mi>H</mi></math></span>(d) bubble functions (with d <span><math><mo>=</mo></math></span> curl or div). This enrichment allows for the construction of a modified interpolation operator, which is crucial for establishing optimal <em>a priori</em> error estimates in the energy norm. Numerical examples are presented to verify both the theoretical results and the stabilization properties of the proposed method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117129"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local projection stabilization methods for H(curl) and H(div) advection problems\",\"authors\":\"Yangfan Luo ,&nbsp;Jindong Wang ,&nbsp;Shuonan Wu\",\"doi\":\"10.1016/j.cam.2025.117129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We devise local projection stabilization (LPS) methods for advection problems in the <span><math><mi>H</mi></math></span>(curl) and <span><math><mi>H</mi></math></span>(div) spaces, employing conforming finite element spaces of arbitrary order within a unified framework. The key ingredient is a local inf–sup condition, enabled by enriching the approximation space with appropriate <span><math><mi>H</mi></math></span>(d) bubble functions (with d <span><math><mo>=</mo></math></span> curl or div). This enrichment allows for the construction of a modified interpolation operator, which is crucial for establishing optimal <em>a priori</em> error estimates in the energy norm. Numerical examples are presented to verify both the theoretical results and the stabilization properties of the proposed method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117129\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725006430\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了局部投影稳定(LPS)方法在H(旋度)和H(div)空间的平流问题,采用统一框架内任意阶的一致性有限元空间。关键因素是一个局部的辅助条件,通过用适当的H(d)泡函数(d = curl或div)丰富近似空间来实现。这种丰富允许构造一个改进的插值算子,这对于在能量范数中建立最优先验误差估计至关重要。数值算例验证了该方法的理论结果和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local projection stabilization methods for H(curl) and H(div) advection problems
We devise local projection stabilization (LPS) methods for advection problems in the H(curl) and H(div) spaces, employing conforming finite element spaces of arbitrary order within a unified framework. The key ingredient is a local inf–sup condition, enabled by enriching the approximation space with appropriate H(d) bubble functions (with d = curl or div). This enrichment allows for the construction of a modified interpolation operator, which is crucial for establishing optimal a priori error estimates in the energy norm. Numerical examples are presented to verify both the theoretical results and the stabilization properties of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信