基于图自适应正则化的大边界分类器

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Vítor M. Hanriot , Turíbio T. Salis , Luiz C.B. Torres , Frederico Coelho , Antonio P. Braga
{"title":"基于图自适应正则化的大边界分类器","authors":"Vítor M. Hanriot ,&nbsp;Turíbio T. Salis ,&nbsp;Luiz C.B. Torres ,&nbsp;Frederico Coelho ,&nbsp;Antonio P. Braga","doi":"10.1016/j.patrec.2025.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the use of per-class regularization hyperparameters in Gabriel graph-based binary classifiers. We demonstrate how the quality index used for regularization behaves both in the margin region and in the presence of outliers, and how incorporating this regularization flexibility can lead to solutions that effectively eliminate outliers while training the classifier. We also show how it can address class imbalance by generating higher and lower thresholds for the majority and minority classes, respectively. Thus, rather than having a single solution based on fixed thresholds, flexible thresholds expand the solution space and can be optimized through hyperparameter tuning algorithms. Friedman test shows that flexible thresholds are capable of improving Gabriel graph-based classifiers.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"198 ","pages":"Pages 43-49"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large margin classifier with graph-based adaptive regularization\",\"authors\":\"Vítor M. Hanriot ,&nbsp;Turíbio T. Salis ,&nbsp;Luiz C.B. Torres ,&nbsp;Frederico Coelho ,&nbsp;Antonio P. Braga\",\"doi\":\"10.1016/j.patrec.2025.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces the use of per-class regularization hyperparameters in Gabriel graph-based binary classifiers. We demonstrate how the quality index used for regularization behaves both in the margin region and in the presence of outliers, and how incorporating this regularization flexibility can lead to solutions that effectively eliminate outliers while training the classifier. We also show how it can address class imbalance by generating higher and lower thresholds for the majority and minority classes, respectively. Thus, rather than having a single solution based on fixed thresholds, flexible thresholds expand the solution space and can be optimized through hyperparameter tuning algorithms. Friedman test shows that flexible thresholds are capable of improving Gabriel graph-based classifiers.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"198 \",\"pages\":\"Pages 43-49\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525003186\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525003186","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

介绍了每类正则化超参数在基于Gabriel图的二元分类器中的应用。我们演示了用于正则化的质量指数如何在边缘区域和异常值存在的情况下表现,以及如何结合这种正则化灵活性可以在训练分类器时有效地消除异常值的解决方案。我们还展示了它如何通过分别为多数和少数阶级生成更高和更低的阈值来解决阶级不平衡问题。因此,灵活的阈值扩展了解空间,并可以通过超参数调优算法进行优化,而不是基于固定阈值的单一解。Friedman测试表明,灵活的阈值能够改进基于Gabriel图的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large margin classifier with graph-based adaptive regularization
This paper introduces the use of per-class regularization hyperparameters in Gabriel graph-based binary classifiers. We demonstrate how the quality index used for regularization behaves both in the margin region and in the presence of outliers, and how incorporating this regularization flexibility can lead to solutions that effectively eliminate outliers while training the classifier. We also show how it can address class imbalance by generating higher and lower thresholds for the majority and minority classes, respectively. Thus, rather than having a single solution based on fixed thresholds, flexible thresholds expand the solution space and can be optimized through hyperparameter tuning algorithms. Friedman test shows that flexible thresholds are capable of improving Gabriel graph-based classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信