{"title":"锂离子电池Doyle-Fuller-Newman模型的后向欧拉有限元格式的最优速率误差估计和二次解耦求解器","authors":"Shu Xu , Liqun Cao","doi":"10.1016/j.cam.2025.117131","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the convergence of a backward Euler finite element discretization applied to a multi-domain and multi-scale elliptic–parabolic system, derived from the Doyle-Fuller-Newman model for lithium-ion cells. We establish optimal-order error estimates for the solution in the norms <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>. To improve computational efficiency, we propose a novel solver that accelerates the solution process and controls memory usage. Numerical experiments with realistic battery parameters validate the theoretical error rates and demonstrate the significantly superior performance of the proposed solver over existing solvers.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117131"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal-rate error estimates and a twice decoupled solver for a backward Euler finite element scheme of the Doyle–Fuller–Newman model of lithium-ion cells\",\"authors\":\"Shu Xu , Liqun Cao\",\"doi\":\"10.1016/j.cam.2025.117131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the convergence of a backward Euler finite element discretization applied to a multi-domain and multi-scale elliptic–parabolic system, derived from the Doyle-Fuller-Newman model for lithium-ion cells. We establish optimal-order error estimates for the solution in the norms <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>. To improve computational efficiency, we propose a novel solver that accelerates the solution process and controls memory usage. Numerical experiments with realistic battery parameters validate the theoretical error rates and demonstrate the significantly superior performance of the proposed solver over existing solvers.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117131\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725006454\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006454","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal-rate error estimates and a twice decoupled solver for a backward Euler finite element scheme of the Doyle–Fuller–Newman model of lithium-ion cells
We investigate the convergence of a backward Euler finite element discretization applied to a multi-domain and multi-scale elliptic–parabolic system, derived from the Doyle-Fuller-Newman model for lithium-ion cells. We establish optimal-order error estimates for the solution in the norms and , . To improve computational efficiency, we propose a novel solver that accelerates the solution process and controls memory usage. Numerical experiments with realistic battery parameters validate the theoretical error rates and demonstrate the significantly superior performance of the proposed solver over existing solvers.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.