锂离子电池Doyle-Fuller-Newman模型的后向欧拉有限元格式的最优速率误差估计和二次解耦求解器

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Shu Xu , Liqun Cao
{"title":"锂离子电池Doyle-Fuller-Newman模型的后向欧拉有限元格式的最优速率误差估计和二次解耦求解器","authors":"Shu Xu ,&nbsp;Liqun Cao","doi":"10.1016/j.cam.2025.117131","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the convergence of a backward Euler finite element discretization applied to a multi-domain and multi-scale elliptic–parabolic system, derived from the Doyle-Fuller-Newman model for lithium-ion cells. We establish optimal-order error estimates for the solution in the norms <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>. To improve computational efficiency, we propose a novel solver that accelerates the solution process and controls memory usage. Numerical experiments with realistic battery parameters validate the theoretical error rates and demonstrate the significantly superior performance of the proposed solver over existing solvers.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117131"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal-rate error estimates and a twice decoupled solver for a backward Euler finite element scheme of the Doyle–Fuller–Newman model of lithium-ion cells\",\"authors\":\"Shu Xu ,&nbsp;Liqun Cao\",\"doi\":\"10.1016/j.cam.2025.117131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the convergence of a backward Euler finite element discretization applied to a multi-domain and multi-scale elliptic–parabolic system, derived from the Doyle-Fuller-Newman model for lithium-ion cells. We establish optimal-order error estimates for the solution in the norms <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></msubsup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>. To improve computational efficiency, we propose a novel solver that accelerates the solution process and controls memory usage. Numerical experiments with realistic battery parameters validate the theoretical error rates and demonstrate the significantly superior performance of the proposed solver over existing solvers.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117131\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725006454\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006454","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文从锂离子电池的Doyle-Fuller-Newman模型出发,研究了应用于多域多尺度椭圆-抛物系统的后向欧拉有限元离散化的收敛性。我们在规范l2(H1)和l2(l2(Hrq))中建立了解的最优阶误差估计,其中q=0,1。为了提高计算效率,我们提出了一种新的求解器,它可以加速求解过程并控制内存使用。实际电池参数的数值实验验证了理论误差率,并证明了所提求解器的性能明显优于现有的求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal-rate error estimates and a twice decoupled solver for a backward Euler finite element scheme of the Doyle–Fuller–Newman model of lithium-ion cells
We investigate the convergence of a backward Euler finite element discretization applied to a multi-domain and multi-scale elliptic–parabolic system, derived from the Doyle-Fuller-Newman model for lithium-ion cells. We establish optimal-order error estimates for the solution in the norms l2(H1) and l2(L2(Hrq)), q=0,1. To improve computational efficiency, we propose a novel solver that accelerates the solution process and controls memory usage. Numerical experiments with realistic battery parameters validate the theoretical error rates and demonstrate the significantly superior performance of the proposed solver over existing solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信