无扭CR流形的量化与约化

IF 1.6 2区 数学 Q1 MATHEMATICS
Andrea Galasso , Chin-Yu Hsiao
{"title":"无扭CR流形的量化与约化","authors":"Andrea Galasso ,&nbsp;Chin-Yu Hsiao","doi":"10.1016/j.jfa.2025.111225","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a compact torsion free CR manifold <em>X</em> and assume that <em>X</em> admits a compact CR Lie group action <em>G</em>. Let <em>L</em> be a <em>G</em>-equivariant rigid CR line bundle over <em>X</em>. It seems natural to consider the space of <em>G</em>-invariant CR sections in the high tensor powers as quantization space, on which a certain weighted <em>G</em>-invariant Fourier–Szegő operator projects. Under certain natural assumptions, we show that the group invariant Fourier–Szegő projector admits a full asymptotic expansion. As an application, if the tensor power of the line bundle is large enough, we prove that quantization commutes with reduction.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 2","pages":"Article 111225"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization and reduction for torsion free CR manifolds\",\"authors\":\"Andrea Galasso ,&nbsp;Chin-Yu Hsiao\",\"doi\":\"10.1016/j.jfa.2025.111225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider a compact torsion free CR manifold <em>X</em> and assume that <em>X</em> admits a compact CR Lie group action <em>G</em>. Let <em>L</em> be a <em>G</em>-equivariant rigid CR line bundle over <em>X</em>. It seems natural to consider the space of <em>G</em>-invariant CR sections in the high tensor powers as quantization space, on which a certain weighted <em>G</em>-invariant Fourier–Szegő operator projects. Under certain natural assumptions, we show that the group invariant Fourier–Szegő projector admits a full asymptotic expansion. As an application, if the tensor power of the line bundle is large enough, we prove that quantization commutes with reduction.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 2\",\"pages\":\"Article 111225\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625004070\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625004070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个紧致无挠CR流形X,并假设X存在紧致CR李群作用g。设L是X上的一个g等变刚性CR线束。将高张量幂中g不变CR截面的空间视为量化空间似乎是很自然的,在量化空间上投射着某个加权g不变傅立叶-塞格格算子。在一定的自然假设下,证明了群不变傅里叶-塞格尔投影可以完全渐近展开。作为一个应用,当线束的张量幂足够大时,我们证明了量化与约简相交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization and reduction for torsion free CR manifolds
Consider a compact torsion free CR manifold X and assume that X admits a compact CR Lie group action G. Let L be a G-equivariant rigid CR line bundle over X. It seems natural to consider the space of G-invariant CR sections in the high tensor powers as quantization space, on which a certain weighted G-invariant Fourier–Szegő operator projects. Under certain natural assumptions, we show that the group invariant Fourier–Szegő projector admits a full asymptotic expansion. As an application, if the tensor power of the line bundle is large enough, we prove that quantization commutes with reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信