Nicolas Malterre , Francesca Bot , Justyna Tarapata , Elke K. Arendt , Emanuele Zannini , James A. O’Mahony
{"title":"采用高压均质处理的扁豆分离蛋白悬浮液具有更好的溶解度和胶体稳定性","authors":"Nicolas Malterre , Francesca Bot , Justyna Tarapata , Elke K. Arendt , Emanuele Zannini , James A. O’Mahony","doi":"10.1016/j.foostr.2025.100469","DOIUrl":null,"url":null,"abstract":"<div><div>Lentil protein has generally good techno-functional properties; however, the limited solubility of lentil protein is a barrier to its wider use in food applications. This study aimed to evaluate the impact of high-pressure homogenisation (HPH), in the range 0–180 MPa, on selected techno-functional properties of lentil protein isolate (LPI) suspensions. The results showed that the low solubility (62.8 %) of LPI is mainly attributed to hydrophobic interactions and hydrogen bonds. Treatment with HPH at 180 MPa was effective in increasing this solubility to 95.3 %. The weighted mean volume diameter of particles in the suspensions decreased from 10.7 ± 1.1 (control) to 0.33 ± 0.06 µm (180 MPa), with this reduction in particle size attributed to physical disruptions/breakage of powder particles and of insoluble protein aggregates. Surface hydrophobicity increased from 614 to 1312 on HPH treatment, due to the exposure of previously-buried hydrophobic groups. The physical stability of the suspensions increased with increasing pressure, as evidenced by the separation rate decreasing from 8.55 % to 4.92 %/h for the control and 180 MPa treatments, respectively. These results indicate that HPH is a promising processing strategy to develop colloidally stable lentil protein suspensions with enhanced solubility and improved techno-functional properties for use of lentil protein ingredients in sustainable food products.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"46 ","pages":"Article 100469"},"PeriodicalIF":5.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lentil protein isolate suspensions with improved solubility and colloidal stability using high pressure homogenisation treatments\",\"authors\":\"Nicolas Malterre , Francesca Bot , Justyna Tarapata , Elke K. Arendt , Emanuele Zannini , James A. O’Mahony\",\"doi\":\"10.1016/j.foostr.2025.100469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lentil protein has generally good techno-functional properties; however, the limited solubility of lentil protein is a barrier to its wider use in food applications. This study aimed to evaluate the impact of high-pressure homogenisation (HPH), in the range 0–180 MPa, on selected techno-functional properties of lentil protein isolate (LPI) suspensions. The results showed that the low solubility (62.8 %) of LPI is mainly attributed to hydrophobic interactions and hydrogen bonds. Treatment with HPH at 180 MPa was effective in increasing this solubility to 95.3 %. The weighted mean volume diameter of particles in the suspensions decreased from 10.7 ± 1.1 (control) to 0.33 ± 0.06 µm (180 MPa), with this reduction in particle size attributed to physical disruptions/breakage of powder particles and of insoluble protein aggregates. Surface hydrophobicity increased from 614 to 1312 on HPH treatment, due to the exposure of previously-buried hydrophobic groups. The physical stability of the suspensions increased with increasing pressure, as evidenced by the separation rate decreasing from 8.55 % to 4.92 %/h for the control and 180 MPa treatments, respectively. These results indicate that HPH is a promising processing strategy to develop colloidally stable lentil protein suspensions with enhanced solubility and improved techno-functional properties for use of lentil protein ingredients in sustainable food products.</div></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"46 \",\"pages\":\"Article 100469\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329125000644\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329125000644","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Lentil protein isolate suspensions with improved solubility and colloidal stability using high pressure homogenisation treatments
Lentil protein has generally good techno-functional properties; however, the limited solubility of lentil protein is a barrier to its wider use in food applications. This study aimed to evaluate the impact of high-pressure homogenisation (HPH), in the range 0–180 MPa, on selected techno-functional properties of lentil protein isolate (LPI) suspensions. The results showed that the low solubility (62.8 %) of LPI is mainly attributed to hydrophobic interactions and hydrogen bonds. Treatment with HPH at 180 MPa was effective in increasing this solubility to 95.3 %. The weighted mean volume diameter of particles in the suspensions decreased from 10.7 ± 1.1 (control) to 0.33 ± 0.06 µm (180 MPa), with this reduction in particle size attributed to physical disruptions/breakage of powder particles and of insoluble protein aggregates. Surface hydrophobicity increased from 614 to 1312 on HPH treatment, due to the exposure of previously-buried hydrophobic groups. The physical stability of the suspensions increased with increasing pressure, as evidenced by the separation rate decreasing from 8.55 % to 4.92 %/h for the control and 180 MPa treatments, respectively. These results indicate that HPH is a promising processing strategy to develop colloidally stable lentil protein suspensions with enhanced solubility and improved techno-functional properties for use of lentil protein ingredients in sustainable food products.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.