基于信念-似然变换的多源信息融合新对称信念α-散度和信念熵

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhe Liu , Sukumar Letchmunan , Muhammet Deveci , Dragan Pamucar , Patrick Siarry
{"title":"基于信念-似然变换的多源信息融合新对称信念α-散度和信念熵","authors":"Zhe Liu ,&nbsp;Sukumar Letchmunan ,&nbsp;Muhammet Deveci ,&nbsp;Dragan Pamucar ,&nbsp;Patrick Siarry","doi":"10.1016/j.inffus.2025.103769","DOIUrl":null,"url":null,"abstract":"<div><div>Dempster-Shafer evidence theory, a powerful tool for managing imperfect information, has been extensively used in various fields of multi-source information fusion. However, how to effectively quantify the difference between evidences and the uncertainty within each evidence remains a challenge. In this paper, we introduce two new symmetric belief <span><math><mi>α</mi></math></span>-divergences based on belief-plausibility transformation to measure the difference between evidences. These divergences exhibit key properties such as nonnegativity, nondegeneracy and symmetry. We also show that they reduce to well-known divergences like <span><math><msup><mi>χ</mi><mn>2</mn></msup></math></span>, Jeffreys, Hellinger, Jensen-Shannon and arithmetic-geometric in specific cases. Additionally, we propose a new belief entropy, derived from the belief-plausibility transformation, to quantify the uncertainty inherent in evidence. Leveraging both the divergences and entropy, we develop a new multi-source information fusion method that assesses the credibility and informational volume of each evidence, providing deeper insights into the importance of each evidence. To demonstrate the effectiveness of our method, we apply it to plant disease detection and fault diagnosis, where it outperforms existing techniques.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103769"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New symmetric belief α-divergence and belief entropy via belief-plausibility transformation for multi-source information fusion\",\"authors\":\"Zhe Liu ,&nbsp;Sukumar Letchmunan ,&nbsp;Muhammet Deveci ,&nbsp;Dragan Pamucar ,&nbsp;Patrick Siarry\",\"doi\":\"10.1016/j.inffus.2025.103769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dempster-Shafer evidence theory, a powerful tool for managing imperfect information, has been extensively used in various fields of multi-source information fusion. However, how to effectively quantify the difference between evidences and the uncertainty within each evidence remains a challenge. In this paper, we introduce two new symmetric belief <span><math><mi>α</mi></math></span>-divergences based on belief-plausibility transformation to measure the difference between evidences. These divergences exhibit key properties such as nonnegativity, nondegeneracy and symmetry. We also show that they reduce to well-known divergences like <span><math><msup><mi>χ</mi><mn>2</mn></msup></math></span>, Jeffreys, Hellinger, Jensen-Shannon and arithmetic-geometric in specific cases. Additionally, we propose a new belief entropy, derived from the belief-plausibility transformation, to quantify the uncertainty inherent in evidence. Leveraging both the divergences and entropy, we develop a new multi-source information fusion method that assesses the credibility and informational volume of each evidence, providing deeper insights into the importance of each evidence. To demonstrate the effectiveness of our method, we apply it to plant disease detection and fault diagnosis, where it outperforms existing techniques.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"127 \",\"pages\":\"Article 103769\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525008310\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008310","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Dempster-Shafer证据理论作为一种管理不完全信息的有力工具,已广泛应用于多源信息融合的各个领域。然而,如何有效地量化证据之间的差异和每个证据中的不确定性仍然是一个挑战。本文引入了基于信念-似然变换的两种新的对称信念α-散度来度量证据之间的差异。这些散度表现出非负性、非简并性和对称性等关键性质。我们还表明,在特定情况下,它们减少到众所周知的分歧,如χ2, Jeffreys, Hellinger, Jensen-Shannon和算术-几何。此外,我们提出了一个新的信念熵,从信念-似是而非的转换,以量化证据固有的不确定性。利用散度和熵,我们开发了一种新的多源信息融合方法,评估每个证据的可信度和信息量,从而更深入地了解每个证据的重要性。为了证明我们的方法的有效性,我们将其应用于植物病害检测和故障诊断,在这方面它优于现有的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New symmetric belief α-divergence and belief entropy via belief-plausibility transformation for multi-source information fusion
Dempster-Shafer evidence theory, a powerful tool for managing imperfect information, has been extensively used in various fields of multi-source information fusion. However, how to effectively quantify the difference between evidences and the uncertainty within each evidence remains a challenge. In this paper, we introduce two new symmetric belief α-divergences based on belief-plausibility transformation to measure the difference between evidences. These divergences exhibit key properties such as nonnegativity, nondegeneracy and symmetry. We also show that they reduce to well-known divergences like χ2, Jeffreys, Hellinger, Jensen-Shannon and arithmetic-geometric in specific cases. Additionally, we propose a new belief entropy, derived from the belief-plausibility transformation, to quantify the uncertainty inherent in evidence. Leveraging both the divergences and entropy, we develop a new multi-source information fusion method that assesses the credibility and informational volume of each evidence, providing deeper insights into the importance of each evidence. To demonstrate the effectiveness of our method, we apply it to plant disease detection and fault diagnosis, where it outperforms existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信