中红外光谱法预测土壤百年稳定有机碳比例

IF 6.6 1区 农林科学 Q1 SOIL SCIENCE
Lorenza Pacini , Marcus Schiedung , Marija Stojanova , Pierre Roudier , Pierre Arbelet , Pierre Barré , François Baudin , Aurélie Cambou , Lauric Cécillon , Jussi Heinonsalo , Kristiina Karhu , Sam McNally , Pascal Omondiagbe , Christopher Poeplau , Nicolas P.A. Saby
{"title":"中红外光谱法预测土壤百年稳定有机碳比例","authors":"Lorenza Pacini ,&nbsp;Marcus Schiedung ,&nbsp;Marija Stojanova ,&nbsp;Pierre Roudier ,&nbsp;Pierre Arbelet ,&nbsp;Pierre Barré ,&nbsp;François Baudin ,&nbsp;Aurélie Cambou ,&nbsp;Lauric Cécillon ,&nbsp;Jussi Heinonsalo ,&nbsp;Kristiina Karhu ,&nbsp;Sam McNally ,&nbsp;Pascal Omondiagbe ,&nbsp;Christopher Poeplau ,&nbsp;Nicolas P.A. Saby","doi":"10.1016/j.geoderma.2025.117536","DOIUrl":null,"url":null,"abstract":"<div><div>Recent work has shown that it is possible to quantify the proportion of centennially stable soil organic carbon (SOC) by using Rock-Eval® thermal analysis results as input variables for PARTYsoc, a learning model calibrated on long term experiments data. This method of quantifying SOC biogeochemical stability holds promise for improving projections of SOC stock evolutions. Here, we assessed the potential of mid-infrared spectroscopy (MIR) as a lower-cost, higher-throughput technique to facilitate its wide-scale deployment.</div><div>We compiled a spectral library of over 1,800 records obtained through the scanning of samples from the French Réseau de Mesure de la Qualité des Sols to calibrate a model using MIR data to predict the proportion of centennially stable SOC. The model gave accurate predictions (RMSE = 0.06, RPD = 2.21, RPIQ = 3.26), suggesting that MIR spectra contain relevant information on SOC biogeochemical stability. We then tried to transfer this model directly to datasets acquired using another MIR spectrometer on German and Finnish soil samples. The accuracy of the predictions was degraded, even when using the CORAL data alignment method to harmonise the different spectral datasets.</div><div>Our results show that it is possible to predict the proportion of centennially stable carbon determined by the PARTYsoc model using MIR spectroscopy. However, we found that the transfer of such models to different soils, scanned with different instruments or different protocols, is difficult. Large-scale deployment of such models will require careful calibration transfer, probably associated to local calibration within a similar spectral space.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"462 ","pages":"Article 117536"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the proportion of centennially stable soil organic carbon using mid-infrared spectroscopy\",\"authors\":\"Lorenza Pacini ,&nbsp;Marcus Schiedung ,&nbsp;Marija Stojanova ,&nbsp;Pierre Roudier ,&nbsp;Pierre Arbelet ,&nbsp;Pierre Barré ,&nbsp;François Baudin ,&nbsp;Aurélie Cambou ,&nbsp;Lauric Cécillon ,&nbsp;Jussi Heinonsalo ,&nbsp;Kristiina Karhu ,&nbsp;Sam McNally ,&nbsp;Pascal Omondiagbe ,&nbsp;Christopher Poeplau ,&nbsp;Nicolas P.A. Saby\",\"doi\":\"10.1016/j.geoderma.2025.117536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent work has shown that it is possible to quantify the proportion of centennially stable soil organic carbon (SOC) by using Rock-Eval® thermal analysis results as input variables for PARTYsoc, a learning model calibrated on long term experiments data. This method of quantifying SOC biogeochemical stability holds promise for improving projections of SOC stock evolutions. Here, we assessed the potential of mid-infrared spectroscopy (MIR) as a lower-cost, higher-throughput technique to facilitate its wide-scale deployment.</div><div>We compiled a spectral library of over 1,800 records obtained through the scanning of samples from the French Réseau de Mesure de la Qualité des Sols to calibrate a model using MIR data to predict the proportion of centennially stable SOC. The model gave accurate predictions (RMSE = 0.06, RPD = 2.21, RPIQ = 3.26), suggesting that MIR spectra contain relevant information on SOC biogeochemical stability. We then tried to transfer this model directly to datasets acquired using another MIR spectrometer on German and Finnish soil samples. The accuracy of the predictions was degraded, even when using the CORAL data alignment method to harmonise the different spectral datasets.</div><div>Our results show that it is possible to predict the proportion of centennially stable carbon determined by the PARTYsoc model using MIR spectroscopy. However, we found that the transfer of such models to different soils, scanned with different instruments or different protocols, is difficult. Large-scale deployment of such models will require careful calibration transfer, probably associated to local calibration within a similar spectral space.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"462 \",\"pages\":\"Article 117536\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125003775\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125003775","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,通过使用Rock-Eval®热分析结果作为PARTYsoc的输入变量,可以量化百年稳定土壤有机碳(SOC)的比例。PARTYsoc是一个基于长期实验数据校准的学习模型。这种量化有机碳生物地球化学稳定性的方法有望改善有机碳储量演化的预测。在这里,我们评估了中红外光谱(MIR)作为一种低成本、高通量技术的潜力,以促进其大规模部署。我们编制了一个光谱库,其中包括通过扫描来自法国太阳质量测量中心的样品获得的1800多个记录,以校准使用MIR数据的模型,以预测百年稳定SOC的比例。该模型预测结果准确(RMSE = 0.06, RPD = 2.21, RPIQ = 3.26),表明MIR光谱包含有机碳生物地球化学稳定性的相关信息。然后,我们试图将该模型直接转移到使用另一台MIR光谱仪在德国和芬兰土壤样品上获得的数据集。即使使用CORAL数据校准方法来协调不同的光谱数据集,预测的准确性也会下降。我们的研究结果表明,利用MIR光谱可以预测由PARTYsoc模型测定的百年稳定碳的比例。然而,我们发现将这些模型转移到不同的土壤,用不同的仪器或不同的方案扫描,是困难的。这种模型的大规模部署将需要仔细的校准转移,可能与相似光谱空间内的局部校准有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the proportion of centennially stable soil organic carbon using mid-infrared spectroscopy
Recent work has shown that it is possible to quantify the proportion of centennially stable soil organic carbon (SOC) by using Rock-Eval® thermal analysis results as input variables for PARTYsoc, a learning model calibrated on long term experiments data. This method of quantifying SOC biogeochemical stability holds promise for improving projections of SOC stock evolutions. Here, we assessed the potential of mid-infrared spectroscopy (MIR) as a lower-cost, higher-throughput technique to facilitate its wide-scale deployment.
We compiled a spectral library of over 1,800 records obtained through the scanning of samples from the French Réseau de Mesure de la Qualité des Sols to calibrate a model using MIR data to predict the proportion of centennially stable SOC. The model gave accurate predictions (RMSE = 0.06, RPD = 2.21, RPIQ = 3.26), suggesting that MIR spectra contain relevant information on SOC biogeochemical stability. We then tried to transfer this model directly to datasets acquired using another MIR spectrometer on German and Finnish soil samples. The accuracy of the predictions was degraded, even when using the CORAL data alignment method to harmonise the different spectral datasets.
Our results show that it is possible to predict the proportion of centennially stable carbon determined by the PARTYsoc model using MIR spectroscopy. However, we found that the transfer of such models to different soils, scanned with different instruments or different protocols, is difficult. Large-scale deployment of such models will require careful calibration transfer, probably associated to local calibration within a similar spectral space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信