{"title":"前馈神经网络模型中的不确定性传播","authors":"Jeremy Diamzon , Daniele Venturi","doi":"10.1016/j.neunet.2025.108178","DOIUrl":null,"url":null,"abstract":"<div><div>We develop new uncertainty propagation methods for feed-forward neural network architectures with leaky ReLU activation functions subject to random perturbations in the input vectors. In particular, we derive analytical expressions for the probability density function (PDF) of the neural network output and its statistical moments as a function of the input uncertainty and the parameters of the network, i.e., weights and biases. A key finding is that an appropriate linearization of the leaky ReLU activation function yields accurate statistical results even for large perturbations in the input vectors. This can be attributed to the way information propagates through the network. We also propose new analytically tractable Gaussian copula surrogate models to approximate the full joint PDF of the neural network output. To validate our theoretical results, we conduct Monte Carlo simulations and a thorough error analysis on a multi-layer neural network representing a nonlinear integro-differential operator between two polynomial function spaces. Our findings demonstrate excellent agreement between the theoretical predictions and Monte Carlo simulations.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"Article 108178"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty propagation in feed-forward neural network models\",\"authors\":\"Jeremy Diamzon , Daniele Venturi\",\"doi\":\"10.1016/j.neunet.2025.108178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop new uncertainty propagation methods for feed-forward neural network architectures with leaky ReLU activation functions subject to random perturbations in the input vectors. In particular, we derive analytical expressions for the probability density function (PDF) of the neural network output and its statistical moments as a function of the input uncertainty and the parameters of the network, i.e., weights and biases. A key finding is that an appropriate linearization of the leaky ReLU activation function yields accurate statistical results even for large perturbations in the input vectors. This can be attributed to the way information propagates through the network. We also propose new analytically tractable Gaussian copula surrogate models to approximate the full joint PDF of the neural network output. To validate our theoretical results, we conduct Monte Carlo simulations and a thorough error analysis on a multi-layer neural network representing a nonlinear integro-differential operator between two polynomial function spaces. Our findings demonstrate excellent agreement between the theoretical predictions and Monte Carlo simulations.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"194 \",\"pages\":\"Article 108178\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025010585\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025010585","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Uncertainty propagation in feed-forward neural network models
We develop new uncertainty propagation methods for feed-forward neural network architectures with leaky ReLU activation functions subject to random perturbations in the input vectors. In particular, we derive analytical expressions for the probability density function (PDF) of the neural network output and its statistical moments as a function of the input uncertainty and the parameters of the network, i.e., weights and biases. A key finding is that an appropriate linearization of the leaky ReLU activation function yields accurate statistical results even for large perturbations in the input vectors. This can be attributed to the way information propagates through the network. We also propose new analytically tractable Gaussian copula surrogate models to approximate the full joint PDF of the neural network output. To validate our theoretical results, we conduct Monte Carlo simulations and a thorough error analysis on a multi-layer neural network representing a nonlinear integro-differential operator between two polynomial function spaces. Our findings demonstrate excellent agreement between the theoretical predictions and Monte Carlo simulations.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.