固定尺寸图的极值距离谱半径

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Hongying Lin , Bo Zhou
{"title":"固定尺寸图的极值距离谱半径","authors":"Hongying Lin ,&nbsp;Bo Zhou","doi":"10.1016/j.aam.2025.102980","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>m</em> be a positive integer. Brualdi and Hoffman proposed the problem to determine the (connected) graphs with maximum adjacency spectral radius in a given graph class and they posed a conjecture for the class of graphs with given size <em>m</em>. After partial results due to Friedland and Stanley, Rowlinson completely confirmed the conjecture. The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We investigate the problem to determine the connected graphs with minimum distance spectral radius in the class of graphs with size <em>m</em>. Given <em>m</em>, there is exactly one positive integer <em>n</em> such that <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>&lt;</mo><mi>m</mi><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. We establish some structural properties of the extremal graphs for all <em>m</em> and solve the problem for <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>}</mo><mo>≤</mo><mi>m</mi><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. We give a conjecture for the remaining case. To prove the main results, we also determine the complements of forests of fixed order with large and small distance spectral radius.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"173 ","pages":"Article 102980"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal distance spectral radius of graphs with fixed size\",\"authors\":\"Hongying Lin ,&nbsp;Bo Zhou\",\"doi\":\"10.1016/j.aam.2025.102980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>m</em> be a positive integer. Brualdi and Hoffman proposed the problem to determine the (connected) graphs with maximum adjacency spectral radius in a given graph class and they posed a conjecture for the class of graphs with given size <em>m</em>. After partial results due to Friedland and Stanley, Rowlinson completely confirmed the conjecture. The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We investigate the problem to determine the connected graphs with minimum distance spectral radius in the class of graphs with size <em>m</em>. Given <em>m</em>, there is exactly one positive integer <em>n</em> such that <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>&lt;</mo><mi>m</mi><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. We establish some structural properties of the extremal graphs for all <em>m</em> and solve the problem for <span><math><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>}</mo><mo>≤</mo><mi>m</mi><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. We give a conjecture for the remaining case. To prove the main results, we also determine the complements of forests of fixed order with large and small distance spectral radius.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"173 \",\"pages\":\"Article 102980\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825001423\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001423","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设m为正整数。Brualdi和Hoffman提出了确定给定图类中邻接谱半径最大的(连通)图的问题,并对给定大小为m的图类提出了一个猜想。在Friedland和Stanley的部分结果之后,Rowlinson完全证实了这个猜想。连通图的距离谱半径是其距离矩阵的最大特征值。我们研究了在大小为m的图类中确定具有最小距离谱半径的连通图的问题。给定m,存在一个正整数n使得(n−12)<m≤(n2)。我们建立了所有m的极值图的一些结构性质,并解决了(n−12)+max (n−62,1)≤m≤(n2)的问题。我们对剩下的情况作一个推测。为了证明主要结果,我们还确定了大小距离谱半径的定阶森林的补。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal distance spectral radius of graphs with fixed size
Let m be a positive integer. Brualdi and Hoffman proposed the problem to determine the (connected) graphs with maximum adjacency spectral radius in a given graph class and they posed a conjecture for the class of graphs with given size m. After partial results due to Friedland and Stanley, Rowlinson completely confirmed the conjecture. The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We investigate the problem to determine the connected graphs with minimum distance spectral radius in the class of graphs with size m. Given m, there is exactly one positive integer n such that (n12)<m(n2). We establish some structural properties of the extremal graphs for all m and solve the problem for (n12)+max{n62,1}m(n2). We give a conjecture for the remaining case. To prove the main results, we also determine the complements of forests of fixed order with large and small distance spectral radius.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信