基于comsol的改善热脉冲测量冻土热特性的数值方法

IF 6.6 1区 农林科学 Q1 SOIL SCIENCE
Junru Chen , Shuna Feng , Miles Dyck , Francis Zvomuya , Xiaobin Li , Hailong He
{"title":"基于comsol的改善热脉冲测量冻土热特性的数值方法","authors":"Junru Chen ,&nbsp;Shuna Feng ,&nbsp;Miles Dyck ,&nbsp;Francis Zvomuya ,&nbsp;Xiaobin Li ,&nbsp;Hailong He","doi":"10.1016/j.geoderma.2025.117531","DOIUrl":null,"url":null,"abstract":"<div><div>Heat pulse (HP) is the most widely used transient technique determining soil thermal properties (STPs) in unfrozen conditions, yet its application to frozen soils introduces significant challenges. At high subfreezing temperatures (−5 to 0 °C), the HP measurements induce thawing and refreezing of ice, dynamically altering the frozen soil thermal properties (FSTPs) being measured. Conventional analytical solutions fail to account for these phase change effects, leading to substantial errors in estimation. Although various approaches have been developed to improve FSTPs determination, achieving accurate measurements remain challenging. This study employed a COMSOL-based numerical model to solve heat conduction equations incorporating latent heat and compared the results with that obtained with traditional analytical solutions. The results revealed that analytical solutions consistently underestimate frozen soil thermal conductivity (FSTC) at temperatures above −3 °C, even with optimized heating strategies. Numerical simulations demonstrated that phase transition parameters critically influence temperature evolution, particularly above −5 °C, and the COMSOL improved FSTC estimates between −4 and 0 °C, though the performance depended on heating strategies. To facilitate parameter selection, linear regression models were derived for phase transition interval (Δ<em>T<sub>p</sub></em>, <em>R</em><sup>2</sup> = 0.37) and phase transition point (<em>T<sub>pc</sub></em>, <em>R</em><sup>2</sup> = 0.30). These advancements enhance the accuracy of HP-measured FSTPs, providing a more reliable approach for cold-region researches and applications.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"462 ","pages":"Article 117531"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A COMSOL-based numerical approach to improve heat-pulse measured frozen soil thermal properties\",\"authors\":\"Junru Chen ,&nbsp;Shuna Feng ,&nbsp;Miles Dyck ,&nbsp;Francis Zvomuya ,&nbsp;Xiaobin Li ,&nbsp;Hailong He\",\"doi\":\"10.1016/j.geoderma.2025.117531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat pulse (HP) is the most widely used transient technique determining soil thermal properties (STPs) in unfrozen conditions, yet its application to frozen soils introduces significant challenges. At high subfreezing temperatures (−5 to 0 °C), the HP measurements induce thawing and refreezing of ice, dynamically altering the frozen soil thermal properties (FSTPs) being measured. Conventional analytical solutions fail to account for these phase change effects, leading to substantial errors in estimation. Although various approaches have been developed to improve FSTPs determination, achieving accurate measurements remain challenging. This study employed a COMSOL-based numerical model to solve heat conduction equations incorporating latent heat and compared the results with that obtained with traditional analytical solutions. The results revealed that analytical solutions consistently underestimate frozen soil thermal conductivity (FSTC) at temperatures above −3 °C, even with optimized heating strategies. Numerical simulations demonstrated that phase transition parameters critically influence temperature evolution, particularly above −5 °C, and the COMSOL improved FSTC estimates between −4 and 0 °C, though the performance depended on heating strategies. To facilitate parameter selection, linear regression models were derived for phase transition interval (Δ<em>T<sub>p</sub></em>, <em>R</em><sup>2</sup> = 0.37) and phase transition point (<em>T<sub>pc</sub></em>, <em>R</em><sup>2</sup> = 0.30). These advancements enhance the accuracy of HP-measured FSTPs, providing a more reliable approach for cold-region researches and applications.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"462 \",\"pages\":\"Article 117531\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125003726\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125003726","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

热脉冲(HP)是在非冻结条件下测定土壤热特性(STPs)的最广泛使用的瞬态技术,但其在冻土中的应用带来了重大挑战。在低温下(- 5 ~ 0°C),高温测量会引起冰的融化和再冻结,从而动态改变被测冻土的热特性(FSTPs)。传统的分析解决方案无法解释这些相变效应,导致在估计中存在重大误差。尽管已经开发了各种方法来改进fstp的测定,但实现准确的测量仍然具有挑战性。本文采用基于comsol的数值模型求解含潜热的热传导方程,并与传统解析解的结果进行了比较。结果表明,即使采用优化的加热策略,在- 3°C以上的温度下,解析解始终低估冻土热导率(FSTC)。数值模拟表明,相变参数严重影响温度演变,特别是在- 5°C以上,COMSOL改善了- 4至0°C之间的FSTC估计,尽管性能取决于加热策略。为了便于参数选择,我们分别建立了相变间隔(ΔTp, R2 = 0.37)和相变点(Tpc, R2 = 0.30)的线性回归模型。这些进步提高了hp测量fstp的准确性,为寒冷地区的研究和应用提供了更可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A COMSOL-based numerical approach to improve heat-pulse measured frozen soil thermal properties
Heat pulse (HP) is the most widely used transient technique determining soil thermal properties (STPs) in unfrozen conditions, yet its application to frozen soils introduces significant challenges. At high subfreezing temperatures (−5 to 0 °C), the HP measurements induce thawing and refreezing of ice, dynamically altering the frozen soil thermal properties (FSTPs) being measured. Conventional analytical solutions fail to account for these phase change effects, leading to substantial errors in estimation. Although various approaches have been developed to improve FSTPs determination, achieving accurate measurements remain challenging. This study employed a COMSOL-based numerical model to solve heat conduction equations incorporating latent heat and compared the results with that obtained with traditional analytical solutions. The results revealed that analytical solutions consistently underestimate frozen soil thermal conductivity (FSTC) at temperatures above −3 °C, even with optimized heating strategies. Numerical simulations demonstrated that phase transition parameters critically influence temperature evolution, particularly above −5 °C, and the COMSOL improved FSTC estimates between −4 and 0 °C, though the performance depended on heating strategies. To facilitate parameter selection, linear regression models were derived for phase transition interval (ΔTp, R2 = 0.37) and phase transition point (Tpc, R2 = 0.30). These advancements enhance the accuracy of HP-measured FSTPs, providing a more reliable approach for cold-region researches and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信