土壤侵蚀强度影响下的土壤有机质含量制图

IF 6.6 1区 农林科学 Q1 SOIL SCIENCE
Ziwei Liu , Mingchang Wang , Xingnan Liu , Fengyan Wang , Xue Ji , Xiaoyan Li , Yilin Bao
{"title":"土壤侵蚀强度影响下的土壤有机质含量制图","authors":"Ziwei Liu ,&nbsp;Mingchang Wang ,&nbsp;Xingnan Liu ,&nbsp;Fengyan Wang ,&nbsp;Xue Ji ,&nbsp;Xiaoyan Li ,&nbsp;Yilin Bao","doi":"10.1016/j.geoderma.2025.117532","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term soil erosion exacerbates the progressive depletion of soil organic matter (SOM). Accurate assessment of long-term SOM dynamics therefore requires explicit consideration of erosion as a key factor. This study investigated the spatio-temporal dynamics of SOM in northeastern China by incorporating the effects of varying erosion intensities. Specifically, Landsat time-series data combined with environmental variables were used to map SOM changes over multiple decades. A novel time-series prediction framework was developed, integrating Stacking and local regression strategies. By combining the nonlinear flexibility of machine learning, the spatial adaptivity of geographically weighted regression (GWR), and the feature-learning capacity of convolutional neural networks (CNN), the framework improved SOM mapping accuracy and robustness, raising R<sup>2</sup> from 0.582 to 0.639 and reducing RMSE from 13.39 g kg<sup>−1</sup> to 12.45 g kg<sup>−1</sup>. Incorporating local regression via zonal modeling of erosion zones further enhanced performance, achieving an R<sup>2</sup> of 0.715 and an RMSE of 10.83 g kg<sup>−1</sup>. Moreover, uncertainty was reduced from 1.45 ± 0.05 g kg<sup>−1</sup> to 1.26 ± 0.06 g kg<sup>−1</sup>, significantly improving mapping stability and prediction reliability. These results demonstrate that local regression, by explicitly accounting for erosion heterogeneity, effectively mitigates spatial variability in SOM, particularly under conditions of limited and unevenly distributed training data. This study provides a valuable reference for long-term SOM monitoring and sustainable cropland management.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"462 ","pages":"Article 117532"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping soil organic matter contents under the impact of soil erosion intensity\",\"authors\":\"Ziwei Liu ,&nbsp;Mingchang Wang ,&nbsp;Xingnan Liu ,&nbsp;Fengyan Wang ,&nbsp;Xue Ji ,&nbsp;Xiaoyan Li ,&nbsp;Yilin Bao\",\"doi\":\"10.1016/j.geoderma.2025.117532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Long-term soil erosion exacerbates the progressive depletion of soil organic matter (SOM). Accurate assessment of long-term SOM dynamics therefore requires explicit consideration of erosion as a key factor. This study investigated the spatio-temporal dynamics of SOM in northeastern China by incorporating the effects of varying erosion intensities. Specifically, Landsat time-series data combined with environmental variables were used to map SOM changes over multiple decades. A novel time-series prediction framework was developed, integrating Stacking and local regression strategies. By combining the nonlinear flexibility of machine learning, the spatial adaptivity of geographically weighted regression (GWR), and the feature-learning capacity of convolutional neural networks (CNN), the framework improved SOM mapping accuracy and robustness, raising R<sup>2</sup> from 0.582 to 0.639 and reducing RMSE from 13.39 g kg<sup>−1</sup> to 12.45 g kg<sup>−1</sup>. Incorporating local regression via zonal modeling of erosion zones further enhanced performance, achieving an R<sup>2</sup> of 0.715 and an RMSE of 10.83 g kg<sup>−1</sup>. Moreover, uncertainty was reduced from 1.45 ± 0.05 g kg<sup>−1</sup> to 1.26 ± 0.06 g kg<sup>−1</sup>, significantly improving mapping stability and prediction reliability. These results demonstrate that local regression, by explicitly accounting for erosion heterogeneity, effectively mitigates spatial variability in SOM, particularly under conditions of limited and unevenly distributed training data. This study provides a valuable reference for long-term SOM monitoring and sustainable cropland management.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"462 \",\"pages\":\"Article 117532\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125003738\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125003738","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

长期的土壤侵蚀加剧了土壤有机质的逐渐耗竭。因此,准确评估长期土壤侵蚀动态需要明确考虑侵蚀作为关键因素。考虑不同侵蚀强度的影响,研究了东北地区土壤有机质的时空动态。具体来说,Landsat时间序列数据与环境变量相结合,用于绘制几十年来SOM的变化。结合叠层和局部回归策略,提出了一种新的时间序列预测框架。通过结合机器学习的非线性灵活性、地理加权回归(GWR)的空间适应性和卷积神经网络(CNN)的特征学习能力,该框架提高了SOM映射的精度和鲁棒性,将R2从0.582提高到0.639,将RMSE从13.39 g kg - 1降低到12.45 g kg - 1。结合侵蚀带分区建模的局部回归进一步提高了性能,R2为0.715,RMSE为10.83 g kg - 1。此外,不确定度从1.45±0.05 g kg - 1降低到1.26±0.06 g kg - 1,显著提高了制图的稳定性和预测的可靠性。这些结果表明,局部回归通过明确地考虑侵蚀异质性,有效地减轻了SOM的空间变异性,特别是在训练数据有限且分布不均匀的情况下。该研究为土壤有机质长期监测和农田可持续管理提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping soil organic matter contents under the impact of soil erosion intensity
Long-term soil erosion exacerbates the progressive depletion of soil organic matter (SOM). Accurate assessment of long-term SOM dynamics therefore requires explicit consideration of erosion as a key factor. This study investigated the spatio-temporal dynamics of SOM in northeastern China by incorporating the effects of varying erosion intensities. Specifically, Landsat time-series data combined with environmental variables were used to map SOM changes over multiple decades. A novel time-series prediction framework was developed, integrating Stacking and local regression strategies. By combining the nonlinear flexibility of machine learning, the spatial adaptivity of geographically weighted regression (GWR), and the feature-learning capacity of convolutional neural networks (CNN), the framework improved SOM mapping accuracy and robustness, raising R2 from 0.582 to 0.639 and reducing RMSE from 13.39 g kg−1 to 12.45 g kg−1. Incorporating local regression via zonal modeling of erosion zones further enhanced performance, achieving an R2 of 0.715 and an RMSE of 10.83 g kg−1. Moreover, uncertainty was reduced from 1.45 ± 0.05 g kg−1 to 1.26 ± 0.06 g kg−1, significantly improving mapping stability and prediction reliability. These results demonstrate that local regression, by explicitly accounting for erosion heterogeneity, effectively mitigates spatial variability in SOM, particularly under conditions of limited and unevenly distributed training data. This study provides a valuable reference for long-term SOM monitoring and sustainable cropland management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信