线性稀疏支持向量机近端梯度法的线性收敛性

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoqi Jiao , Heng Lian , Jiamin Liu , Yingying Zhang
{"title":"线性稀疏支持向量机近端梯度法的线性收敛性","authors":"Xiaoqi Jiao ,&nbsp;Heng Lian ,&nbsp;Jiamin Liu ,&nbsp;Yingying Zhang","doi":"10.1016/j.neunet.2025.108162","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the hinge loss function being non-strongly-convex and non-strongly smooth, we establish the linear rate of convergence for sparse linear support vector machines (SVM) up to its statistical accuracy. The algorithm we use is the proximal gradient method for composite functions, applied to a sequence of regularization parameters to compute the approximate solution path on a grid. Unlike works on loss functions that are strongly convex and strongly smooth, here we do not have linear convergence to the exact solution, but we can demonstrate <em>linear convergence to the population truth up to the statistical error</em> (in particular, we simultaneously consider numerical convergence and statistical convergence). For any regularization parameter in the chosen decreasing sequence, we show that the estimator is in a small neighborhood of the exact solution after <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><msup><mi>s</mi><mo>*</mo></msup><mo>)</mo></mrow></math></span> iterations, where <span><math><msup><mi>s</mi><mo>*</mo></msup></math></span> is the sparsity of the true coefficient in the model, and a total number of <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow></math></span> stages (i.e., using a sequence of regularization parameters of length <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow></math></span>) are required to achieve the near-oracle statistical rate, with <span><math><mi>n</mi></math></span> the sample size.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"Article 108162"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear convergence of proximal gradient method for linear sparse SVM\",\"authors\":\"Xiaoqi Jiao ,&nbsp;Heng Lian ,&nbsp;Jiamin Liu ,&nbsp;Yingying Zhang\",\"doi\":\"10.1016/j.neunet.2025.108162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the hinge loss function being non-strongly-convex and non-strongly smooth, we establish the linear rate of convergence for sparse linear support vector machines (SVM) up to its statistical accuracy. The algorithm we use is the proximal gradient method for composite functions, applied to a sequence of regularization parameters to compute the approximate solution path on a grid. Unlike works on loss functions that are strongly convex and strongly smooth, here we do not have linear convergence to the exact solution, but we can demonstrate <em>linear convergence to the population truth up to the statistical error</em> (in particular, we simultaneously consider numerical convergence and statistical convergence). For any regularization parameter in the chosen decreasing sequence, we show that the estimator is in a small neighborhood of the exact solution after <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><msup><mi>s</mi><mo>*</mo></msup><mo>)</mo></mrow></math></span> iterations, where <span><math><msup><mi>s</mi><mo>*</mo></msup></math></span> is the sparsity of the true coefficient in the model, and a total number of <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow></math></span> stages (i.e., using a sequence of regularization parameters of length <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mi>n</mi><mo>)</mo></mrow></math></span>) are required to achieve the near-oracle statistical rate, with <span><math><mi>n</mi></math></span> the sample size.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"194 \",\"pages\":\"Article 108162\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025010421\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025010421","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

尽管铰链损失函数是非强凸和非强光滑的,我们建立了稀疏线性支持向量机(SVM)的线性收敛率达到其统计精度。我们使用的算法是复合函数的近端梯度法,应用于一系列正则化参数来计算网格上的近似解路径。与强凸和强光滑的损失函数不同,这里我们没有精确解的线性收敛,但我们可以证明种群真理的线性收敛,直到统计误差(特别是,我们同时考虑数值收敛和统计收敛)。对于选择的递减序列中的任何正则化参数,我们证明了经过O(log *)次迭代后,估计量处于精确解的小邻域内,其中s*为模型中真实系数的稀疏性,并且需要总共O(logn)个阶段(即使用长度为O(logn)的正则化参数序列)来实现近oracle统计率,样本量为n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear convergence of proximal gradient method for linear sparse SVM
Despite the hinge loss function being non-strongly-convex and non-strongly smooth, we establish the linear rate of convergence for sparse linear support vector machines (SVM) up to its statistical accuracy. The algorithm we use is the proximal gradient method for composite functions, applied to a sequence of regularization parameters to compute the approximate solution path on a grid. Unlike works on loss functions that are strongly convex and strongly smooth, here we do not have linear convergence to the exact solution, but we can demonstrate linear convergence to the population truth up to the statistical error (in particular, we simultaneously consider numerical convergence and statistical convergence). For any regularization parameter in the chosen decreasing sequence, we show that the estimator is in a small neighborhood of the exact solution after O(logs*) iterations, where s* is the sparsity of the true coefficient in the model, and a total number of O(logn) stages (i.e., using a sequence of regularization parameters of length O(logn)) are required to achieve the near-oracle statistical rate, with n the sample size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信