退化(p,r)-拉普拉斯椭圆方程在加权有界条件下

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Jian Liu
{"title":"退化(p,r)-拉普拉斯椭圆方程在加权有界条件下","authors":"Jian Liu","doi":"10.1016/j.aml.2025.109787","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes the existence and uniqueness of weak solutions for a class of double-degenerate singular elliptic equations involving <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-Laplacian operator with weight functions <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a gradient-dependent nonlinearity. We introduce a novel weighted boundedness condition based on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to handle singular coefficients and relax regularity requirements. To the best of our knowledge, such conditions have not been previously addressed in the literature. Working in the weighted Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove the associated operator is bounded, coercive, semicontinuous, and strictly monotone. Applying the Minty–Browder theorem, we obtain an explicit parameter range for <span><math><mi>λ</mi></math></span> ensuring a unique weak solution.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109787"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate (p,r)-Laplacian elliptic equations under weighted boundedness conditions\",\"authors\":\"Jian Liu\",\"doi\":\"10.1016/j.aml.2025.109787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper establishes the existence and uniqueness of weak solutions for a class of double-degenerate singular elliptic equations involving <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-Laplacian operator with weight functions <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a gradient-dependent nonlinearity. We introduce a novel weighted boundedness condition based on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to handle singular coefficients and relax regularity requirements. To the best of our knowledge, such conditions have not been previously addressed in the literature. Working in the weighted Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove the associated operator is bounded, coercive, semicontinuous, and strictly monotone. Applying the Minty–Browder theorem, we obtain an explicit parameter range for <span><math><mi>λ</mi></math></span> ensuring a unique weak solution.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109787\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925003374\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003374","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一类重退化奇异椭圆方程弱解的存在唯一性,该方程涉及(p,r)-拉普拉斯算子,其权函数为ω(x)和ω(x),并具有梯度相关非线性。我们引入了一种新的基于ω(x)的加权有界性条件来处理奇异系数并放宽正则性要求。据我们所知,以前的文献中没有提到过这种情况。在加权Sobolev空间W01,p(ω,Ω)中,证明了相关算子是有界的、强制的、半连续的和严格单调的。利用Minty-Browder定理,我们得到了λ的显式参数范围,保证了λ的弱解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerate (p,r)-Laplacian elliptic equations under weighted boundedness conditions
This paper establishes the existence and uniqueness of weak solutions for a class of double-degenerate singular elliptic equations involving (p,r)-Laplacian operator with weight functions ω(x) and ϑ(x) and a gradient-dependent nonlinearity. We introduce a novel weighted boundedness condition based on ω(x) to handle singular coefficients and relax regularity requirements. To the best of our knowledge, such conditions have not been previously addressed in the literature. Working in the weighted Sobolev space W01,p(ω,Ω), we prove the associated operator is bounded, coercive, semicontinuous, and strictly monotone. Applying the Minty–Browder theorem, we obtain an explicit parameter range for λ ensuring a unique weak solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信