{"title":"退化(p,r)-拉普拉斯椭圆方程在加权有界条件下","authors":"Jian Liu","doi":"10.1016/j.aml.2025.109787","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes the existence and uniqueness of weak solutions for a class of double-degenerate singular elliptic equations involving <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-Laplacian operator with weight functions <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a gradient-dependent nonlinearity. We introduce a novel weighted boundedness condition based on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to handle singular coefficients and relax regularity requirements. To the best of our knowledge, such conditions have not been previously addressed in the literature. Working in the weighted Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove the associated operator is bounded, coercive, semicontinuous, and strictly monotone. Applying the Minty–Browder theorem, we obtain an explicit parameter range for <span><math><mi>λ</mi></math></span> ensuring a unique weak solution.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109787"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate (p,r)-Laplacian elliptic equations under weighted boundedness conditions\",\"authors\":\"Jian Liu\",\"doi\":\"10.1016/j.aml.2025.109787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper establishes the existence and uniqueness of weak solutions for a class of double-degenerate singular elliptic equations involving <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></math></span>-Laplacian operator with weight functions <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ϑ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a gradient-dependent nonlinearity. We introduce a novel weighted boundedness condition based on <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to handle singular coefficients and relax regularity requirements. To the best of our knowledge, such conditions have not been previously addressed in the literature. Working in the weighted Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove the associated operator is bounded, coercive, semicontinuous, and strictly monotone. Applying the Minty–Browder theorem, we obtain an explicit parameter range for <span><math><mi>λ</mi></math></span> ensuring a unique weak solution.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109787\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925003374\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003374","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Degenerate (p,r)-Laplacian elliptic equations under weighted boundedness conditions
This paper establishes the existence and uniqueness of weak solutions for a class of double-degenerate singular elliptic equations involving -Laplacian operator with weight functions and and a gradient-dependent nonlinearity. We introduce a novel weighted boundedness condition based on to handle singular coefficients and relax regularity requirements. To the best of our knowledge, such conditions have not been previously addressed in the literature. Working in the weighted Sobolev space , we prove the associated operator is bounded, coercive, semicontinuous, and strictly monotone. Applying the Minty–Browder theorem, we obtain an explicit parameter range for ensuring a unique weak solution.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.