Nikolas Ringas , R. Mark Lawson , Dilum Fernando , Yuner Huang
{"title":"受面内剪切和重力荷载作用的护套轻钢板的性能和设计","authors":"Nikolas Ringas , R. Mark Lawson , Dilum Fernando , Yuner Huang","doi":"10.1016/j.tws.2025.114047","DOIUrl":null,"url":null,"abstract":"<div><div>The in-plane shear behaviour of sheathed light gauge steel wall panels is investigated by tests on 2.4 m square wall panels together with push-out tests, to determine the shear fixing stiffness and resistance. Parameters such as sheathing material, screw geometry, stud arrangement, adhesives, combined bracing with sheathing boards, and profiled sheeting were considered. An X-braced panel was used as a benchmark and to interpret the forces in the bracing obtained from measured strains. Wall panels with single C- and back-to-back C- sections in the middle of the panel have equivalent shear stiffness and resistance. The use of non-winged fixings can significantly enhance the stiffness of the panel due to increased thread engagement with the board material. Adhesives on the board-frame interface reduce damage evolution on the board material, while significantly increasing both stiffness and resistance. The tests also included the combination of X-bracing and sheathing boards to determine how their stiffnesses may be combined. It was also shown that profiled steel sheets serve as a potential alternative to X-bracing, although they require more fixings. The design approach based on elastic theory for the fixing properties obtained from push-out tests is in close agreement with the test results obtained from the representative wall panel tests, where the ratio of the recorded to the predicted panel shear stiffness and resistance have an average of 1.03 and 1.05, respectively, with a variation of up to 8 %.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 114047"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviour and design of sheathed light gauge steel panels subjected to in-plane shear and gravity loads\",\"authors\":\"Nikolas Ringas , R. Mark Lawson , Dilum Fernando , Yuner Huang\",\"doi\":\"10.1016/j.tws.2025.114047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The in-plane shear behaviour of sheathed light gauge steel wall panels is investigated by tests on 2.4 m square wall panels together with push-out tests, to determine the shear fixing stiffness and resistance. Parameters such as sheathing material, screw geometry, stud arrangement, adhesives, combined bracing with sheathing boards, and profiled sheeting were considered. An X-braced panel was used as a benchmark and to interpret the forces in the bracing obtained from measured strains. Wall panels with single C- and back-to-back C- sections in the middle of the panel have equivalent shear stiffness and resistance. The use of non-winged fixings can significantly enhance the stiffness of the panel due to increased thread engagement with the board material. Adhesives on the board-frame interface reduce damage evolution on the board material, while significantly increasing both stiffness and resistance. The tests also included the combination of X-bracing and sheathing boards to determine how their stiffnesses may be combined. It was also shown that profiled steel sheets serve as a potential alternative to X-bracing, although they require more fixings. The design approach based on elastic theory for the fixing properties obtained from push-out tests is in close agreement with the test results obtained from the representative wall panel tests, where the ratio of the recorded to the predicted panel shear stiffness and resistance have an average of 1.03 and 1.05, respectively, with a variation of up to 8 %.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"218 \",\"pages\":\"Article 114047\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026382312501136X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312501136X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Behaviour and design of sheathed light gauge steel panels subjected to in-plane shear and gravity loads
The in-plane shear behaviour of sheathed light gauge steel wall panels is investigated by tests on 2.4 m square wall panels together with push-out tests, to determine the shear fixing stiffness and resistance. Parameters such as sheathing material, screw geometry, stud arrangement, adhesives, combined bracing with sheathing boards, and profiled sheeting were considered. An X-braced panel was used as a benchmark and to interpret the forces in the bracing obtained from measured strains. Wall panels with single C- and back-to-back C- sections in the middle of the panel have equivalent shear stiffness and resistance. The use of non-winged fixings can significantly enhance the stiffness of the panel due to increased thread engagement with the board material. Adhesives on the board-frame interface reduce damage evolution on the board material, while significantly increasing both stiffness and resistance. The tests also included the combination of X-bracing and sheathing boards to determine how their stiffnesses may be combined. It was also shown that profiled steel sheets serve as a potential alternative to X-bracing, although they require more fixings. The design approach based on elastic theory for the fixing properties obtained from push-out tests is in close agreement with the test results obtained from the representative wall panel tests, where the ratio of the recorded to the predicted panel shear stiffness and resistance have an average of 1.03 and 1.05, respectively, with a variation of up to 8 %.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.