{"title":"在没有伪随机性定义的小密度上","authors":"Thomas Karam","doi":"10.1016/j.ffa.2025.102735","DOIUrl":null,"url":null,"abstract":"<div><div>We identify a new sufficient condition on linear forms <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> which guarantees that every subset of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> on which none of <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> has full image has a density which tends to 0 with <em>k</em>. The condition is much weaker than the condition usually used to guarantee that <span><math><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> takes each value of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> with probability close to <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup></math></span> when <em>x</em> is chosen uniformly at random in the Boolean cube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The density is at most quasipolynomially small in <em>k</em>, a bound that is necessarily close to sharp.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102735"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On small densities defined without pseudorandomness\",\"authors\":\"Thomas Karam\",\"doi\":\"10.1016/j.ffa.2025.102735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We identify a new sufficient condition on linear forms <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> which guarantees that every subset of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> on which none of <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> has full image has a density which tends to 0 with <em>k</em>. The condition is much weaker than the condition usually used to guarantee that <span><math><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> takes each value of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> with probability close to <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup></math></span> when <em>x</em> is chosen uniformly at random in the Boolean cube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The density is at most quasipolynomially small in <em>k</em>, a bound that is necessarily close to sharp.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102735\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001650\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001650","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On small densities defined without pseudorandomness
We identify a new sufficient condition on linear forms which guarantees that every subset of on which none of has full image has a density which tends to 0 with k. The condition is much weaker than the condition usually used to guarantee that takes each value of with probability close to when x is chosen uniformly at random in the Boolean cube . The density is at most quasipolynomially small in k, a bound that is necessarily close to sharp.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.