关于一类完全置换四项

IF 1.2 3区 数学 Q1 MATHEMATICS
Chin Hei Chan , Zhiguo Ding , Nian Li , Xi Xie , Maosheng Xiong , Michael E. Zieve
{"title":"关于一类完全置换四项","authors":"Chin Hei Chan ,&nbsp;Zhiguo Ding ,&nbsp;Nian Li ,&nbsp;Xi Xie ,&nbsp;Maosheng Xiong ,&nbsp;Michael E. Zieve","doi":"10.1016/j.ffa.2025.102734","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn><mi>q</mi></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is the finite field of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> for some positive integer <em>m</em>. Tu et al. (Finite Fields Appl. 68: 1-20, 2020) proposed a sufficient condition under which <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a complete permutation on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. In this paper, we show that this sufficient condition is also necessary, and when <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a complete permutation, then <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>x</mi></math></span> are simultaneously linear equivalent to <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mover><mrow><mi>x</mi></mrow><mo>‾</mo></mover></math></span> and <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mover><mrow><mi>x</mi></mrow><mo>‾</mo></mover><mo>+</mo><mi>γ</mi><mi>x</mi></math></span> for some <span><math><mi>γ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> satisfying <span><math><mrow><mi>ord</mi></mrow><mo>(</mo><msup><mrow><mi>γ</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>3</mn></math></span>. This result leads to a complete characterization of the complete permutation quadrinomials of the above form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102734"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of complete permutation quadrinomials\",\"authors\":\"Chin Hei Chan ,&nbsp;Zhiguo Ding ,&nbsp;Nian Li ,&nbsp;Xi Xie ,&nbsp;Maosheng Xiong ,&nbsp;Michael E. Zieve\",\"doi\":\"10.1016/j.ffa.2025.102734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn><mi>q</mi></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is the finite field of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> for some positive integer <em>m</em>. Tu et al. (Finite Fields Appl. 68: 1-20, 2020) proposed a sufficient condition under which <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a complete permutation on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. In this paper, we show that this sufficient condition is also necessary, and when <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a complete permutation, then <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>x</mi></math></span> are simultaneously linear equivalent to <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mover><mrow><mi>x</mi></mrow><mo>‾</mo></mover></math></span> and <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mover><mrow><mi>x</mi></mrow><mo>‾</mo></mover><mo>+</mo><mi>γ</mi><mi>x</mi></math></span> for some <span><math><mi>γ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> satisfying <span><math><mrow><mi>ord</mi></mrow><mo>(</mo><msup><mrow><mi>γ</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>3</mn></math></span>. This result leads to a complete characterization of the complete permutation quadrinomials of the above form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102734\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001649\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001649","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设f(x)=ax3q+bx2q+1+cxq+2+dx3∈Fq2[x],其中Fq2是q2阶的有限域,对于某正整数m q=2m。Tu等(finite Fields, 68: 1- 20,2020)提出了f(x)是Fq2上的完全置换的充分条件。在本文中,我们证明了这个充分条件也是必要的,并且当f(x)是一个完全置换时,那么对于某些γ∈Fq2满足ord(γq−1)=3,f(x)和f(x)+x同时线性等价于x2x和x2x⊥+γx。这个结果导致了上述形式f(x)的完全置换四项的完全表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of complete permutation quadrinomials
Let f(x)=ax3q+bx2q+1+cxq+2+dx3Fq2[x], where Fq2 is the finite field of order q2 and q=2m for some positive integer m. Tu et al. (Finite Fields Appl. 68: 1-20, 2020) proposed a sufficient condition under which f(x) is a complete permutation on Fq2. In this paper, we show that this sufficient condition is also necessary, and when f(x) is a complete permutation, then f(x) and f(x)+x are simultaneously linear equivalent to x2x and x2x+γx for some γFq2 satisfying ord(γq1)=3. This result leads to a complete characterization of the complete permutation quadrinomials of the above form f(x).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信