{"title":"二属曲线超特性的重性- 1定理","authors":"Shushi Harashita, Yuya Yamamoto","doi":"10.1016/j.ffa.2025.102738","DOIUrl":null,"url":null,"abstract":"<div><div>Igusa proved in 1958 that the polynomial determining the supersingularity of elliptic curves in Legendre form is separable. In this paper, we get an analogous result for curves of genus 2 in Rosenhain form. More precisely we show that the ideal determining the superspeciality of the curve has multiplicity one at every superspecial point. Igusa used a Picard-Fucks differential operator annihilating a Gauß hypergeometric series. We shall use the Lauricella system (of type D) of hypergeometric differential equations in three variables.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102738"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The multiplicity-one theorem for the superspeciality of curves of genus two\",\"authors\":\"Shushi Harashita, Yuya Yamamoto\",\"doi\":\"10.1016/j.ffa.2025.102738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Igusa proved in 1958 that the polynomial determining the supersingularity of elliptic curves in Legendre form is separable. In this paper, we get an analogous result for curves of genus 2 in Rosenhain form. More precisely we show that the ideal determining the superspeciality of the curve has multiplicity one at every superspecial point. Igusa used a Picard-Fucks differential operator annihilating a Gauß hypergeometric series. We shall use the Lauricella system (of type D) of hypergeometric differential equations in three variables.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102738\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001686\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001686","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The multiplicity-one theorem for the superspeciality of curves of genus two
Igusa proved in 1958 that the polynomial determining the supersingularity of elliptic curves in Legendre form is separable. In this paper, we get an analogous result for curves of genus 2 in Rosenhain form. More precisely we show that the ideal determining the superspeciality of the curve has multiplicity one at every superspecial point. Igusa used a Picard-Fucks differential operator annihilating a Gauß hypergeometric series. We shall use the Lauricella system (of type D) of hypergeometric differential equations in three variables.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.