钛掺杂SnO2纳米粒子作为电子传输层:钙钛矿太阳能电池中更高开路电压和稳定性的途径

IF 7.9 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Maryam Alidaei , Vahid Ahmadi , Farzaneh Arabpour Roghabadi , Mahsa Moradbeigi
{"title":"钛掺杂SnO2纳米粒子作为电子传输层:钙钛矿太阳能电池中更高开路电压和稳定性的途径","authors":"Maryam Alidaei ,&nbsp;Vahid Ahmadi ,&nbsp;Farzaneh Arabpour Roghabadi ,&nbsp;Mahsa Moradbeigi","doi":"10.1016/j.mtsust.2025.101241","DOIUrl":null,"url":null,"abstract":"<div><div>Tin oxide (SnO<sub>2</sub>) is widely used as an electron transport layer (ETL) in planar perovskite solar cells (PSCs) due to its advantageous optical, electrical, and chemical properties. These include high transmittance, minimal UV photocatalytic activity, suitable energy levels, high electron mobility, and excellent chemical stability. Additionally, SnO<sub>2</sub> can be deposited at low temperatures, facilitating the fabrication of flexible PSCs. However, the open circuit voltage (V<sub>OC</sub>) in PSCs can decrease due to high defect density and the deeper conduction band (CB) energy level of SnO<sub>2</sub>. In this study, titanium (Ti) doping of nanoparticle (NP) SnO<sub>2</sub> ETL is employed to passivate defects and improve charge carrier dynamics in PSCs. The planar PSC utilizing Ti-doped NP-SnO<sub>2</sub> ETL shows a significant increase in V<sub>OC</sub> and power conversion efficiency (PCE), achieving values of 1.10 V and 19.75 %, respectively, compared to the undoped variant, which has a V<sub>OC</sub> of 1.02 V and a PCE of 17.50 %. Furthermore, the unencapsulated Ti-doped NP-SnO<sub>2</sub> ETL-based PSC retains over 92 % of its initial PCE after approximately 1440 h of storage at room temperature (25–30 °C) with a relative humidity of 20–50 %.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"32 ","pages":"Article 101241"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titanium-doped SnO2 nanoparticles as the electron transport layer: A pathway to higher open circuit voltage and stability in perovskite solar cells\",\"authors\":\"Maryam Alidaei ,&nbsp;Vahid Ahmadi ,&nbsp;Farzaneh Arabpour Roghabadi ,&nbsp;Mahsa Moradbeigi\",\"doi\":\"10.1016/j.mtsust.2025.101241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tin oxide (SnO<sub>2</sub>) is widely used as an electron transport layer (ETL) in planar perovskite solar cells (PSCs) due to its advantageous optical, electrical, and chemical properties. These include high transmittance, minimal UV photocatalytic activity, suitable energy levels, high electron mobility, and excellent chemical stability. Additionally, SnO<sub>2</sub> can be deposited at low temperatures, facilitating the fabrication of flexible PSCs. However, the open circuit voltage (V<sub>OC</sub>) in PSCs can decrease due to high defect density and the deeper conduction band (CB) energy level of SnO<sub>2</sub>. In this study, titanium (Ti) doping of nanoparticle (NP) SnO<sub>2</sub> ETL is employed to passivate defects and improve charge carrier dynamics in PSCs. The planar PSC utilizing Ti-doped NP-SnO<sub>2</sub> ETL shows a significant increase in V<sub>OC</sub> and power conversion efficiency (PCE), achieving values of 1.10 V and 19.75 %, respectively, compared to the undoped variant, which has a V<sub>OC</sub> of 1.02 V and a PCE of 17.50 %. Furthermore, the unencapsulated Ti-doped NP-SnO<sub>2</sub> ETL-based PSC retains over 92 % of its initial PCE after approximately 1440 h of storage at room temperature (25–30 °C) with a relative humidity of 20–50 %.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"32 \",\"pages\":\"Article 101241\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725001708\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725001708","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化锡(SnO2)由于其优越的光学、电学和化学性质,被广泛用作平面钙钛矿太阳能电池(PSCs)的电子传输层(ETL)。这些特性包括高透光率,最小的紫外光催化活性,合适的能级,高电子迁移率和优异的化学稳定性。此外,SnO2可以在低温下沉积,便于柔性psc的制造。然而,由于高缺陷密度和SnO2较深的导带能级,PSCs的开路电压(VOC)会降低。在本研究中,采用纳米颗粒(NP) SnO2 ETL掺杂钛(Ti)来钝化PSCs中的缺陷并改善载流子动力学。使用ti掺杂的NP-SnO2 ETL的平面PSC的VOC和功率转换效率(PCE)分别达到1.10 V和19.75%,而未掺杂的版本的VOC和PCE分别为1.02 V和17.50%。此外,未封装的掺钛NP-SnO2 etl基PSC在室温(25-30°C)和相对湿度为20 - 50%下储存约1440小时后,其初始PCE保留了92%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Titanium-doped SnO2 nanoparticles as the electron transport layer: A pathway to higher open circuit voltage and stability in perovskite solar cells
Tin oxide (SnO2) is widely used as an electron transport layer (ETL) in planar perovskite solar cells (PSCs) due to its advantageous optical, electrical, and chemical properties. These include high transmittance, minimal UV photocatalytic activity, suitable energy levels, high electron mobility, and excellent chemical stability. Additionally, SnO2 can be deposited at low temperatures, facilitating the fabrication of flexible PSCs. However, the open circuit voltage (VOC) in PSCs can decrease due to high defect density and the deeper conduction band (CB) energy level of SnO2. In this study, titanium (Ti) doping of nanoparticle (NP) SnO2 ETL is employed to passivate defects and improve charge carrier dynamics in PSCs. The planar PSC utilizing Ti-doped NP-SnO2 ETL shows a significant increase in VOC and power conversion efficiency (PCE), achieving values of 1.10 V and 19.75 %, respectively, compared to the undoped variant, which has a VOC of 1.02 V and a PCE of 17.50 %. Furthermore, the unencapsulated Ti-doped NP-SnO2 ETL-based PSC retains over 92 % of its initial PCE after approximately 1440 h of storage at room temperature (25–30 °C) with a relative humidity of 20–50 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信