基于人工智能的脑积水CT扫描脑室周围水肿诊断

IF 0.5 Q4 CLINICAL NEUROLOGY
Mahtab Gholami , Shirin Kordnoori , Maliheh Sabeti , Yashar Goorakani , Hamed Mohseni Takallou , Ehsan Moradi
{"title":"基于人工智能的脑积水CT扫描脑室周围水肿诊断","authors":"Mahtab Gholami ,&nbsp;Shirin Kordnoori ,&nbsp;Maliheh Sabeti ,&nbsp;Yashar Goorakani ,&nbsp;Hamed Mohseni Takallou ,&nbsp;Ehsan Moradi","doi":"10.1016/j.inat.2025.102128","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrocephalus is excessive accumulation of cerebrospinal fluid within the cerebral ventricles. It has a complex pathogenesis with various causes. Periventricular edema refers to the abnormal accumulation of fluid in the brain tissue surrounding the cerebral ventricles, an indicative of elevated intracranial pressure or disruption in cerebrospinal fluid flow. Periventricular edema can serve as one of the severity indicators of hydrocephalus, and can assist physicians in predicting the outcomes of treatments and determining appropriate therapeutic interventions. In this study, our goal is to identify periventricular edema in hydrocephalus disease. In this regard, the smoothing-sharpening image filter (SSIF) algorithm is applied to enhance hydrocephalic CT images due to the low quality of CT images and the ambiguity between the boundaries of periventricular edema, ventricles, and other brain regions. Some well-known deep learning models including UNet, PSPNet, LinkNet and FPN are suggested to segment periventricular edema. From the obtained results, the FPN model, compared to the other models, achieves the best evaluation criteria with AUC, dice score, F1-score, precision, and recall values of 95 %, 93 %, 91 %, 91 %, and 92 %, respectively.</div></div>","PeriodicalId":38138,"journal":{"name":"Interdisciplinary Neurosurgery: Advanced Techniques and Case Management","volume":"42 ","pages":"Article 102128"},"PeriodicalIF":0.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based determination of periventricular edema in hydrocephalic brain CT scan\",\"authors\":\"Mahtab Gholami ,&nbsp;Shirin Kordnoori ,&nbsp;Maliheh Sabeti ,&nbsp;Yashar Goorakani ,&nbsp;Hamed Mohseni Takallou ,&nbsp;Ehsan Moradi\",\"doi\":\"10.1016/j.inat.2025.102128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrocephalus is excessive accumulation of cerebrospinal fluid within the cerebral ventricles. It has a complex pathogenesis with various causes. Periventricular edema refers to the abnormal accumulation of fluid in the brain tissue surrounding the cerebral ventricles, an indicative of elevated intracranial pressure or disruption in cerebrospinal fluid flow. Periventricular edema can serve as one of the severity indicators of hydrocephalus, and can assist physicians in predicting the outcomes of treatments and determining appropriate therapeutic interventions. In this study, our goal is to identify periventricular edema in hydrocephalus disease. In this regard, the smoothing-sharpening image filter (SSIF) algorithm is applied to enhance hydrocephalic CT images due to the low quality of CT images and the ambiguity between the boundaries of periventricular edema, ventricles, and other brain regions. Some well-known deep learning models including UNet, PSPNet, LinkNet and FPN are suggested to segment periventricular edema. From the obtained results, the FPN model, compared to the other models, achieves the best evaluation criteria with AUC, dice score, F1-score, precision, and recall values of 95 %, 93 %, 91 %, 91 %, and 92 %, respectively.</div></div>\",\"PeriodicalId\":38138,\"journal\":{\"name\":\"Interdisciplinary Neurosurgery: Advanced Techniques and Case Management\",\"volume\":\"42 \",\"pages\":\"Article 102128\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Neurosurgery: Advanced Techniques and Case Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214751925001409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Neurosurgery: Advanced Techniques and Case Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214751925001409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑积水是脑脊液在脑室内的过度积聚。其发病机制复杂,病因多样。脑室周围水肿是指脑室周围脑组织中异常积液,表明颅内压升高或脑脊液流动中断。脑室周围水肿可以作为脑积水严重程度的指标之一,可以帮助医生预测治疗结果,确定适当的治疗干预措施。在这项研究中,我们的目的是确定脑积水疾病的脑室周围水肿。为此,针对CT图像质量较低,脑室周围水肿、脑室及其他脑区边界模糊的问题,采用平滑锐化图像滤波(SSIF)算法对脑积水CT图像进行增强。一些著名的深度学习模型包括UNet、PSPNet、LinkNet和FPN被推荐用于分割心室周围水肿。从得到的结果来看,FPN模型与其他模型相比,AUC、dice得分、f1得分、precision和recall分别达到95%、93%、91%、91%和92%,达到了最佳评价标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-based determination of periventricular edema in hydrocephalic brain CT scan
Hydrocephalus is excessive accumulation of cerebrospinal fluid within the cerebral ventricles. It has a complex pathogenesis with various causes. Periventricular edema refers to the abnormal accumulation of fluid in the brain tissue surrounding the cerebral ventricles, an indicative of elevated intracranial pressure or disruption in cerebrospinal fluid flow. Periventricular edema can serve as one of the severity indicators of hydrocephalus, and can assist physicians in predicting the outcomes of treatments and determining appropriate therapeutic interventions. In this study, our goal is to identify periventricular edema in hydrocephalus disease. In this regard, the smoothing-sharpening image filter (SSIF) algorithm is applied to enhance hydrocephalic CT images due to the low quality of CT images and the ambiguity between the boundaries of periventricular edema, ventricles, and other brain regions. Some well-known deep learning models including UNet, PSPNet, LinkNet and FPN are suggested to segment periventricular edema. From the obtained results, the FPN model, compared to the other models, achieves the best evaluation criteria with AUC, dice score, F1-score, precision, and recall values of 95 %, 93 %, 91 %, 91 %, and 92 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
236
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信