Erin S. Lamb , Yaakov Glick , Jose Pincha , Ishu Goel , Robert S. Windeler , Simona Ovtar , Vasiliy Lukonin , Ian Sun , Shantanu Pandit , Jeffrey W. Nicholson
{"title":"邀请论文:用于所有光纤纳秒级脉冲放大的大模区Yb光纤偏振维持","authors":"Erin S. Lamb , Yaakov Glick , Jose Pincha , Ishu Goel , Robert S. Windeler , Simona Ovtar , Vasiliy Lukonin , Ian Sun , Shantanu Pandit , Jeffrey W. Nicholson","doi":"10.1016/j.yofte.2025.104420","DOIUrl":null,"url":null,"abstract":"<div><div>Polarization maintaining (PM), all-fiber amplifiers offer the benefits of alignment free and environmentally stable operation. To achieve high output powers, particularly in pulsed operation, it is necessary to balance the need to reduce deleterious nonlinear effects, often through the use of large mode area (LMA) fibers, with the onset of transverse mode instability whereby higher order modes (HOMs) mix with the desired fundamental mode output. Over the last few years, advances in high HOM loss, ytterbium-doped LMA fibers have enabled continuous wave (CW) output powers up to 5 kW and pulse energies up to 2 mJ in non-PM fibers. In CW operation, LMA PM fibers have shown up to 2 kW of average power. In this contribution, we present all-fiber nanosecond pulsed amplification in a high HOM loss, Yb-doped LMA fiber with a 26 <!--> <span><math><mi>μ</mi></math></span>m mode field diameter and 2.4 dB/m of pump absorption at 976 nm, achieving 1 mJ of pulse energy at 1 kW of average power, and 1.5 mJ of pulse energy at 750 W of average power. The polarization extinction ratios were 20 dB or higher and the M<sup>2</sup> was near the diffraction limit. We measured the in-pulse to out-of-pulse energy and found 99.9% or more of the measured power remained in-pulse.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"95 ","pages":"Article 104420"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invited Paper: Polarization maintaining large mode area Yb fibers for all fiber nanosecond pulse amplification\",\"authors\":\"Erin S. Lamb , Yaakov Glick , Jose Pincha , Ishu Goel , Robert S. Windeler , Simona Ovtar , Vasiliy Lukonin , Ian Sun , Shantanu Pandit , Jeffrey W. Nicholson\",\"doi\":\"10.1016/j.yofte.2025.104420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polarization maintaining (PM), all-fiber amplifiers offer the benefits of alignment free and environmentally stable operation. To achieve high output powers, particularly in pulsed operation, it is necessary to balance the need to reduce deleterious nonlinear effects, often through the use of large mode area (LMA) fibers, with the onset of transverse mode instability whereby higher order modes (HOMs) mix with the desired fundamental mode output. Over the last few years, advances in high HOM loss, ytterbium-doped LMA fibers have enabled continuous wave (CW) output powers up to 5 kW and pulse energies up to 2 mJ in non-PM fibers. In CW operation, LMA PM fibers have shown up to 2 kW of average power. In this contribution, we present all-fiber nanosecond pulsed amplification in a high HOM loss, Yb-doped LMA fiber with a 26 <!--> <span><math><mi>μ</mi></math></span>m mode field diameter and 2.4 dB/m of pump absorption at 976 nm, achieving 1 mJ of pulse energy at 1 kW of average power, and 1.5 mJ of pulse energy at 750 W of average power. The polarization extinction ratios were 20 dB or higher and the M<sup>2</sup> was near the diffraction limit. We measured the in-pulse to out-of-pulse energy and found 99.9% or more of the measured power remained in-pulse.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"95 \",\"pages\":\"Article 104420\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520025002950\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520025002950","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Invited Paper: Polarization maintaining large mode area Yb fibers for all fiber nanosecond pulse amplification
Polarization maintaining (PM), all-fiber amplifiers offer the benefits of alignment free and environmentally stable operation. To achieve high output powers, particularly in pulsed operation, it is necessary to balance the need to reduce deleterious nonlinear effects, often through the use of large mode area (LMA) fibers, with the onset of transverse mode instability whereby higher order modes (HOMs) mix with the desired fundamental mode output. Over the last few years, advances in high HOM loss, ytterbium-doped LMA fibers have enabled continuous wave (CW) output powers up to 5 kW and pulse energies up to 2 mJ in non-PM fibers. In CW operation, LMA PM fibers have shown up to 2 kW of average power. In this contribution, we present all-fiber nanosecond pulsed amplification in a high HOM loss, Yb-doped LMA fiber with a 26 m mode field diameter and 2.4 dB/m of pump absorption at 976 nm, achieving 1 mJ of pulse energy at 1 kW of average power, and 1.5 mJ of pulse energy at 750 W of average power. The polarization extinction ratios were 20 dB or higher and the M2 was near the diffraction limit. We measured the in-pulse to out-of-pulse energy and found 99.9% or more of the measured power remained in-pulse.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.