Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin , Gyucheol Shin
{"title":"扩展模函数和确定形式类群","authors":"Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin , Gyucheol Shin","doi":"10.1016/j.jnt.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>For a positive integer <em>N</em>, we define an extended modular function of level <em>N</em> motivated by physics and investigate its fundamental properties. Let <em>K</em> be an imaginary quadratic field, and let <span><math><mi>O</mi></math></span> be an order in <em>K</em> of discriminant <em>D</em>. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>O</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></msub></math></span> denote the ray class field of <span><math><mi>O</mi></math></span> modulo <span><math><mi>N</mi><mi>O</mi></math></span>. For <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, we provide an explicit description of the Galois group <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>O</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></msub><mo>/</mo><mi>Q</mi><mo>)</mo></math></span> using special values of extended modular functions of level <em>N</em> and the definite form class group of discriminant <em>D</em> and level <em>N</em>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 808-824"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended modular functions and definite form class groups\",\"authors\":\"Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin , Gyucheol Shin\",\"doi\":\"10.1016/j.jnt.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a positive integer <em>N</em>, we define an extended modular function of level <em>N</em> motivated by physics and investigate its fundamental properties. Let <em>K</em> be an imaginary quadratic field, and let <span><math><mi>O</mi></math></span> be an order in <em>K</em> of discriminant <em>D</em>. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>O</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></msub></math></span> denote the ray class field of <span><math><mi>O</mi></math></span> modulo <span><math><mi>N</mi><mi>O</mi></math></span>. For <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, we provide an explicit description of the Galois group <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>O</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></msub><mo>/</mo><mi>Q</mi><mo>)</mo></math></span> using special values of extended modular functions of level <em>N</em> and the definite form class group of discriminant <em>D</em> and level <em>N</em>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 808-824\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002586\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002586","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extended modular functions and definite form class groups
For a positive integer N, we define an extended modular function of level N motivated by physics and investigate its fundamental properties. Let K be an imaginary quadratic field, and let be an order in K of discriminant D. Let denote the ray class field of modulo . For , we provide an explicit description of the Galois group using special values of extended modular functions of level N and the definite form class group of discriminant D and level N.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.