比较正则连分式和后向连分式:lochs型定理和近似性质

IF 0.7 3区 数学 Q3 MATHEMATICS
Zhigang Tian , Lulu Fang
{"title":"比较正则连分式和后向连分式:lochs型定理和近似性质","authors":"Zhigang Tian ,&nbsp;Lulu Fang","doi":"10.1016/j.jnt.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study two problems concerning the relationship between regular continued fractions (RCFs) and backward continued fractions (BCFs). The first problem addresses Lochs-type theorems for RCFs and BCFs, where we compare the number of partial quotients in one expansion as a function of the number of partial quotients in the other expansion. The second problem investigates the approximation properties of RCFs and BCFs, with particular attention to the set of irrational numbers that are infinitely often better approximated by BCFs than by RCFs. We show that this set has Lebesgue measure zero and further analyze it from the perspectives of Baire category and fractal dimension.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 947-972"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing regular and backward continued fractions: Lochs-type theorems and approximation properties\",\"authors\":\"Zhigang Tian ,&nbsp;Lulu Fang\",\"doi\":\"10.1016/j.jnt.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study two problems concerning the relationship between regular continued fractions (RCFs) and backward continued fractions (BCFs). The first problem addresses Lochs-type theorems for RCFs and BCFs, where we compare the number of partial quotients in one expansion as a function of the number of partial quotients in the other expansion. The second problem investigates the approximation properties of RCFs and BCFs, with particular attention to the set of irrational numbers that are infinitely often better approximated by BCFs than by RCFs. We show that this set has Lebesgue measure zero and further analyze it from the perspectives of Baire category and fractal dimension.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 947-972\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002641\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002641","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了正则连分式与倒连分式之间的两个关系问题。第一个问题解决了rcf和BCFs的lochs型定理,其中我们将一个展开式中的部分商的数量作为另一个展开式中部分商数量的函数进行比较。第二个问题研究了rcf和BCFs的近似性质,特别注意了bcf比rcf更能无限近似无理数的集合。证明了该集合具有勒贝格测度零,并进一步从贝尔范畴和分形维数的角度对其进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing regular and backward continued fractions: Lochs-type theorems and approximation properties
In this paper, we study two problems concerning the relationship between regular continued fractions (RCFs) and backward continued fractions (BCFs). The first problem addresses Lochs-type theorems for RCFs and BCFs, where we compare the number of partial quotients in one expansion as a function of the number of partial quotients in the other expansion. The second problem investigates the approximation properties of RCFs and BCFs, with particular attention to the set of irrational numbers that are infinitely often better approximated by BCFs than by RCFs. We show that this set has Lebesgue measure zero and further analyze it from the perspectives of Baire category and fractal dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信