基于物联网的深度学习在干旱条件下的水库水管理预测和决策支持

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Raúl Parada , Arnau Sanz
{"title":"基于物联网的深度学习在干旱条件下的水库水管理预测和决策支持","authors":"Raúl Parada ,&nbsp;Arnau Sanz","doi":"10.1016/j.iot.2025.101780","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an IoT-enabled forecasting and decision-support framework for proactive reservoir management under drought conditions. Using more than two decades of high-resolution hydrometeorological data, we develop and compare Long Short-Term Memory (LSTM) and extended LSTM (xLSTM) models. The xLSTM integrates exponential gating mechanisms to better capture long-range temporal dependencies. We evaluate predictive performance across multiple forecasting horizons (30, 90, 180, and 365 days) and benchmark the results against a classical statistical model (ARIMA). The xLSTM consistently outperforms baseline models in short-term forecasts but exhibits a decline in accuracy at longer horizons, highlighting the limitations of purely data-driven approaches for extended predictions. To operationalize model outputs, we integrate the forecasts into a real-time decision-support dashboard that aligns predictions with reservoir operation thresholds established in the Catalan Drought Management Plan. This research provides both a methodological contribution to deep learning for hydrological forecasting and a practical framework for data-driven drought preparedness in climate-sensitive regions.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101780"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT-integrated deep learning for forecasting and decision support in reservoir water management under drought conditions\",\"authors\":\"Raúl Parada ,&nbsp;Arnau Sanz\",\"doi\":\"10.1016/j.iot.2025.101780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an IoT-enabled forecasting and decision-support framework for proactive reservoir management under drought conditions. Using more than two decades of high-resolution hydrometeorological data, we develop and compare Long Short-Term Memory (LSTM) and extended LSTM (xLSTM) models. The xLSTM integrates exponential gating mechanisms to better capture long-range temporal dependencies. We evaluate predictive performance across multiple forecasting horizons (30, 90, 180, and 365 days) and benchmark the results against a classical statistical model (ARIMA). The xLSTM consistently outperforms baseline models in short-term forecasts but exhibits a decline in accuracy at longer horizons, highlighting the limitations of purely data-driven approaches for extended predictions. To operationalize model outputs, we integrate the forecasts into a real-time decision-support dashboard that aligns predictions with reservoir operation thresholds established in the Catalan Drought Management Plan. This research provides both a methodological contribution to deep learning for hydrological forecasting and a practical framework for data-driven drought preparedness in climate-sensitive regions.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"34 \",\"pages\":\"Article 101780\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254266052500294X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254266052500294X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于物联网的预测和决策支持框架,用于干旱条件下的主动水库管理。利用20多年的高分辨率水文气象数据,我们开发并比较了长短期记忆(LSTM)和扩展LSTM (xLSTM)模型。xLSTM集成了指数门控机制,以更好地捕获长期时间依赖性。我们评估了多个预测范围(30、90、180和365天)的预测性能,并根据经典统计模型(ARIMA)对结果进行了基准测试。xLSTM在短期预测中始终优于基线模型,但在较长时间内表现出准确性的下降,这突出了纯数据驱动方法用于扩展预测的局限性。为了操作模型输出,我们将预测整合到实时决策支持仪表板中,该仪表板将预测与加泰罗尼亚干旱管理计划中建立的水库运行阈值保持一致。本研究为水文预报的深度学习提供了方法学上的贡献,并为气候敏感地区数据驱动的干旱防范提供了实用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT-integrated deep learning for forecasting and decision support in reservoir water management under drought conditions
This study presents an IoT-enabled forecasting and decision-support framework for proactive reservoir management under drought conditions. Using more than two decades of high-resolution hydrometeorological data, we develop and compare Long Short-Term Memory (LSTM) and extended LSTM (xLSTM) models. The xLSTM integrates exponential gating mechanisms to better capture long-range temporal dependencies. We evaluate predictive performance across multiple forecasting horizons (30, 90, 180, and 365 days) and benchmark the results against a classical statistical model (ARIMA). The xLSTM consistently outperforms baseline models in short-term forecasts but exhibits a decline in accuracy at longer horizons, highlighting the limitations of purely data-driven approaches for extended predictions. To operationalize model outputs, we integrate the forecasts into a real-time decision-support dashboard that aligns predictions with reservoir operation thresholds established in the Catalan Drought Management Plan. This research provides both a methodological contribution to deep learning for hydrological forecasting and a practical framework for data-driven drought preparedness in climate-sensitive regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信