Hojat Shirmard , Ben Mather , Ehsan Farahbakhsh , Karol Czarnota , R. Dietmar Müller
{"title":"全波形层析成像模型的克拉通边界探测揭示了与关键金属矿床的联系","authors":"Hojat Shirmard , Ben Mather , Ehsan Farahbakhsh , Karol Czarnota , R. Dietmar Müller","doi":"10.1016/j.gsf.2025.102176","DOIUrl":null,"url":null,"abstract":"<div><div>Craton margins play a crucial role in mineral exploration as they host faults, fractures, and shear zones that facilitate hydrothermal fluid movement, transporting and depositing dissolved metals into valuable mineral deposits. We use the high-resolution full-waveform seismic inversion model REVEAL to extract horizontal shear wave velocity (<em>V</em><sub>SH</sub>), vertical shear wave velocity (<em>V</em><sub>SV</sub>), and isotropic P-wave velocity (<em>V</em><sub>P</sub>) across depth slices from 150 to 200 km, a range that captures most cratonic lithosphere based on tectonic age and lithospheric thickness analyses. Machine learning, applied through clustered maps, demonstrates that <em>V</em><sub>SH</sub> effectively delineates craton boundaries, aligning with target mineral deposits, including iron oxide copper–gold (IOCG) and sediment-hosted lead, zinc, and copper deposits. These boundaries are characterized by high horizontal shear velocities (4.58–4.68 km/s), and trace the edges of cratons, accreted passive margins, orogens, and thick volcanic arcs. Using published thermal and lithospheric thickness models, we distinguish cratons from other thick lithospheric features and identify their edges and associated deposits. Our results show that ∼85 % of the total metal content (Cu + Pb + Zn) in target deposits lies within ∼120 km of high-velocity cluster boundaries identified as craton edges. Near-craton deposits reveal ∼80 % of the total metal content within ∼90 km of craton boundaries. The weighted cumulative distribution function shows a steeper gradient in metal content closer to craton boundaries, indicating higher concentrations near these tectonic features. Focusing on just 16 % of Earth’s continental areas can reveal over 80 % of known target deposits, highlighting the significance of craton boundaries quantitatively mapped in this study.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 6","pages":"Article 102176"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Craton boundary detection from full-waveform tomography model reveals links to critical metal deposits\",\"authors\":\"Hojat Shirmard , Ben Mather , Ehsan Farahbakhsh , Karol Czarnota , R. Dietmar Müller\",\"doi\":\"10.1016/j.gsf.2025.102176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Craton margins play a crucial role in mineral exploration as they host faults, fractures, and shear zones that facilitate hydrothermal fluid movement, transporting and depositing dissolved metals into valuable mineral deposits. We use the high-resolution full-waveform seismic inversion model REVEAL to extract horizontal shear wave velocity (<em>V</em><sub>SH</sub>), vertical shear wave velocity (<em>V</em><sub>SV</sub>), and isotropic P-wave velocity (<em>V</em><sub>P</sub>) across depth slices from 150 to 200 km, a range that captures most cratonic lithosphere based on tectonic age and lithospheric thickness analyses. Machine learning, applied through clustered maps, demonstrates that <em>V</em><sub>SH</sub> effectively delineates craton boundaries, aligning with target mineral deposits, including iron oxide copper–gold (IOCG) and sediment-hosted lead, zinc, and copper deposits. These boundaries are characterized by high horizontal shear velocities (4.58–4.68 km/s), and trace the edges of cratons, accreted passive margins, orogens, and thick volcanic arcs. Using published thermal and lithospheric thickness models, we distinguish cratons from other thick lithospheric features and identify their edges and associated deposits. Our results show that ∼85 % of the total metal content (Cu + Pb + Zn) in target deposits lies within ∼120 km of high-velocity cluster boundaries identified as craton edges. Near-craton deposits reveal ∼80 % of the total metal content within ∼90 km of craton boundaries. The weighted cumulative distribution function shows a steeper gradient in metal content closer to craton boundaries, indicating higher concentrations near these tectonic features. Focusing on just 16 % of Earth’s continental areas can reveal over 80 % of known target deposits, highlighting the significance of craton boundaries quantitatively mapped in this study.</div></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"16 6\",\"pages\":\"Article 102176\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987125001811\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125001811","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Craton boundary detection from full-waveform tomography model reveals links to critical metal deposits
Craton margins play a crucial role in mineral exploration as they host faults, fractures, and shear zones that facilitate hydrothermal fluid movement, transporting and depositing dissolved metals into valuable mineral deposits. We use the high-resolution full-waveform seismic inversion model REVEAL to extract horizontal shear wave velocity (VSH), vertical shear wave velocity (VSV), and isotropic P-wave velocity (VP) across depth slices from 150 to 200 km, a range that captures most cratonic lithosphere based on tectonic age and lithospheric thickness analyses. Machine learning, applied through clustered maps, demonstrates that VSH effectively delineates craton boundaries, aligning with target mineral deposits, including iron oxide copper–gold (IOCG) and sediment-hosted lead, zinc, and copper deposits. These boundaries are characterized by high horizontal shear velocities (4.58–4.68 km/s), and trace the edges of cratons, accreted passive margins, orogens, and thick volcanic arcs. Using published thermal and lithospheric thickness models, we distinguish cratons from other thick lithospheric features and identify their edges and associated deposits. Our results show that ∼85 % of the total metal content (Cu + Pb + Zn) in target deposits lies within ∼120 km of high-velocity cluster boundaries identified as craton edges. Near-craton deposits reveal ∼80 % of the total metal content within ∼90 km of craton boundaries. The weighted cumulative distribution function shows a steeper gradient in metal content closer to craton boundaries, indicating higher concentrations near these tectonic features. Focusing on just 16 % of Earth’s continental areas can reveal over 80 % of known target deposits, highlighting the significance of craton boundaries quantitatively mapped in this study.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.