痕量多阳离子高熵工程可实现>230 mAh/g的超稳定无钴LiNiO2

IF 17 1区 工程技术 Q1 ENERGY & FUELS
Peng Zhang , Jinquan Liu , Qiqiang Huang , Yang Li , Yi Guo , Zuoguo Xiao , Chenxi Li , Lianghao Wen , Wei Peng , Weijing Yuan , Gaolong Zhu , Liang Yin , Longlong Fan , Lirong Zheng , Jing Zhang , Tiening Tan , Jianfeng Hua , Dongsheng Ren , Languang Lu , Xiang Liu
{"title":"痕量多阳离子高熵工程可实现>230 mAh/g的超稳定无钴LiNiO2","authors":"Peng Zhang ,&nbsp;Jinquan Liu ,&nbsp;Qiqiang Huang ,&nbsp;Yang Li ,&nbsp;Yi Guo ,&nbsp;Zuoguo Xiao ,&nbsp;Chenxi Li ,&nbsp;Lianghao Wen ,&nbsp;Wei Peng ,&nbsp;Weijing Yuan ,&nbsp;Gaolong Zhu ,&nbsp;Liang Yin ,&nbsp;Longlong Fan ,&nbsp;Lirong Zheng ,&nbsp;Jing Zhang ,&nbsp;Tiening Tan ,&nbsp;Jianfeng Hua ,&nbsp;Dongsheng Ren ,&nbsp;Languang Lu ,&nbsp;Xiang Liu","doi":"10.1016/j.etran.2025.100493","DOIUrl":null,"url":null,"abstract":"<div><div>The cobalt-free LiNiO<sub>2</sub> (LNO) cathode, composed solely of transition metal nickel, stands out as a prime candidate for next-generation commercial cathodes, offering an exceptional theoretical capacity of 275 mAh/g, cost efficiency, and environmental sustainability. Unlike LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>2</sub>O<sub>2</sub> (NMC) counterparts, LiNiO<sub>2</sub> (LNO) cathode is plagued by rapid capacity degradation and safety risks due to absence of Co/Mn, which act as structural stabilizers ('rivets') in transition metal layer. This deficiency induces severe anisotropic lattice distortion and multi-phase transitions during charge/discharge cycles. These distortions are exacerbated at elevated temperatures (&gt;45 °C) and at high de-lithiation state with initial discharge capacities exceeding 230 mAh/g. To mitigate these issues, we introduced a high-entropy engineering approach for LNO, exemplified by LiNi<sub>0.98</sub>Mo<sub>0.005</sub>Nb<sub>0.005</sub>Ti<sub>0.005</sub>Mg<sub>0.005</sub>O<sub>2</sub> (LNO-2 %HE). <em>In situ</em> XRD, synchrotron XAS and <em>ex situ</em> analyses reveal that the compositional complexity of LNO-2 %HE enhances structural disorder and amorphous character, which suppresses high-voltage phase transition. This design achieves 96.1 % capacity retention over 100 cycles at 25 °C and 97.5 % retention after 50 cycles at 45 °C, alongside an initial discharge capacity of 238 mAh/g at 0.1C. Furthermore, improved lattice oxygen stability in LNO-2 %HE inhibits oxygen release during thermal phase transitions, significantly enhancing safety. This strategy advances the viability of LNO cathode for high-energy-density batteries.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"26 ","pages":"Article 100493"},"PeriodicalIF":17.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace multi-cation high-entropy engineering enables ultra-stable cobalt-free LiNiO2 with >230 mAh/g\",\"authors\":\"Peng Zhang ,&nbsp;Jinquan Liu ,&nbsp;Qiqiang Huang ,&nbsp;Yang Li ,&nbsp;Yi Guo ,&nbsp;Zuoguo Xiao ,&nbsp;Chenxi Li ,&nbsp;Lianghao Wen ,&nbsp;Wei Peng ,&nbsp;Weijing Yuan ,&nbsp;Gaolong Zhu ,&nbsp;Liang Yin ,&nbsp;Longlong Fan ,&nbsp;Lirong Zheng ,&nbsp;Jing Zhang ,&nbsp;Tiening Tan ,&nbsp;Jianfeng Hua ,&nbsp;Dongsheng Ren ,&nbsp;Languang Lu ,&nbsp;Xiang Liu\",\"doi\":\"10.1016/j.etran.2025.100493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cobalt-free LiNiO<sub>2</sub> (LNO) cathode, composed solely of transition metal nickel, stands out as a prime candidate for next-generation commercial cathodes, offering an exceptional theoretical capacity of 275 mAh/g, cost efficiency, and environmental sustainability. Unlike LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>2</sub>O<sub>2</sub> (NMC) counterparts, LiNiO<sub>2</sub> (LNO) cathode is plagued by rapid capacity degradation and safety risks due to absence of Co/Mn, which act as structural stabilizers ('rivets') in transition metal layer. This deficiency induces severe anisotropic lattice distortion and multi-phase transitions during charge/discharge cycles. These distortions are exacerbated at elevated temperatures (&gt;45 °C) and at high de-lithiation state with initial discharge capacities exceeding 230 mAh/g. To mitigate these issues, we introduced a high-entropy engineering approach for LNO, exemplified by LiNi<sub>0.98</sub>Mo<sub>0.005</sub>Nb<sub>0.005</sub>Ti<sub>0.005</sub>Mg<sub>0.005</sub>O<sub>2</sub> (LNO-2 %HE). <em>In situ</em> XRD, synchrotron XAS and <em>ex situ</em> analyses reveal that the compositional complexity of LNO-2 %HE enhances structural disorder and amorphous character, which suppresses high-voltage phase transition. This design achieves 96.1 % capacity retention over 100 cycles at 25 °C and 97.5 % retention after 50 cycles at 45 °C, alongside an initial discharge capacity of 238 mAh/g at 0.1C. Furthermore, improved lattice oxygen stability in LNO-2 %HE inhibits oxygen release during thermal phase transitions, significantly enhancing safety. This strategy advances the viability of LNO cathode for high-energy-density batteries.</div></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"26 \",\"pages\":\"Article 100493\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116825001006\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825001006","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

无钴LiNiO2 (LNO)阴极仅由过渡金属镍组成,具有275 mAh/g的理论容量、成本效益和环境可持续性,是下一代商用阴极的主要候选者。与LiNixMnyCo2O2 (NMC)不同,LiNiO2 (LNO)阴极由于缺乏Co/Mn而受到容量快速下降和安全风险的困扰,Co/Mn在过渡金属层中充当结构稳定剂(“铆钉”)。这一缺陷在充放电循环中引起严重的各向异性晶格畸变和多相转变。在高温(45°C)和高去锂化状态下(初始放电容量超过230 mAh/g),这些扭曲会加剧。为了缓解这些问题,我们引入了LNO的高熵工程方法,例如lini0.98 mo0.005 nb0.005 ti0.005 mg0.0050 o2 (LNO-2 %HE)。原位XRD、同步XAS和非原位分析表明,lno - 2% HE的成分复杂性增强了结构无序性和非晶态特性,抑制了高压相变。该设计在25°C条件下100次循环的容量保持率为96.1%,在45°C条件下50次循环的容量保持率为97.5%,在0.1C条件下的初始放电容量为238 mAh/g。此外,lno - 2% HE中晶格氧稳定性的提高抑制了热相变过程中的氧释放,显著提高了安全性。这一策略提高了LNO阴极用于高能量密度电池的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace multi-cation high-entropy engineering enables ultra-stable cobalt-free LiNiO2 with >230 mAh/g
The cobalt-free LiNiO2 (LNO) cathode, composed solely of transition metal nickel, stands out as a prime candidate for next-generation commercial cathodes, offering an exceptional theoretical capacity of 275 mAh/g, cost efficiency, and environmental sustainability. Unlike LiNixMnyCo2O2 (NMC) counterparts, LiNiO2 (LNO) cathode is plagued by rapid capacity degradation and safety risks due to absence of Co/Mn, which act as structural stabilizers ('rivets') in transition metal layer. This deficiency induces severe anisotropic lattice distortion and multi-phase transitions during charge/discharge cycles. These distortions are exacerbated at elevated temperatures (>45 °C) and at high de-lithiation state with initial discharge capacities exceeding 230 mAh/g. To mitigate these issues, we introduced a high-entropy engineering approach for LNO, exemplified by LiNi0.98Mo0.005Nb0.005Ti0.005Mg0.005O2 (LNO-2 %HE). In situ XRD, synchrotron XAS and ex situ analyses reveal that the compositional complexity of LNO-2 %HE enhances structural disorder and amorphous character, which suppresses high-voltage phase transition. This design achieves 96.1 % capacity retention over 100 cycles at 25 °C and 97.5 % retention after 50 cycles at 45 °C, alongside an initial discharge capacity of 238 mAh/g at 0.1C. Furthermore, improved lattice oxygen stability in LNO-2 %HE inhibits oxygen release during thermal phase transitions, significantly enhancing safety. This strategy advances the viability of LNO cathode for high-energy-density batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信