Peng Zhang , Jinquan Liu , Qiqiang Huang , Yang Li , Yi Guo , Zuoguo Xiao , Chenxi Li , Lianghao Wen , Wei Peng , Weijing Yuan , Gaolong Zhu , Liang Yin , Longlong Fan , Lirong Zheng , Jing Zhang , Tiening Tan , Jianfeng Hua , Dongsheng Ren , Languang Lu , Xiang Liu
{"title":"痕量多阳离子高熵工程可实现>230 mAh/g的超稳定无钴LiNiO2","authors":"Peng Zhang , Jinquan Liu , Qiqiang Huang , Yang Li , Yi Guo , Zuoguo Xiao , Chenxi Li , Lianghao Wen , Wei Peng , Weijing Yuan , Gaolong Zhu , Liang Yin , Longlong Fan , Lirong Zheng , Jing Zhang , Tiening Tan , Jianfeng Hua , Dongsheng Ren , Languang Lu , Xiang Liu","doi":"10.1016/j.etran.2025.100493","DOIUrl":null,"url":null,"abstract":"<div><div>The cobalt-free LiNiO<sub>2</sub> (LNO) cathode, composed solely of transition metal nickel, stands out as a prime candidate for next-generation commercial cathodes, offering an exceptional theoretical capacity of 275 mAh/g, cost efficiency, and environmental sustainability. Unlike LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>2</sub>O<sub>2</sub> (NMC) counterparts, LiNiO<sub>2</sub> (LNO) cathode is plagued by rapid capacity degradation and safety risks due to absence of Co/Mn, which act as structural stabilizers ('rivets') in transition metal layer. This deficiency induces severe anisotropic lattice distortion and multi-phase transitions during charge/discharge cycles. These distortions are exacerbated at elevated temperatures (>45 °C) and at high de-lithiation state with initial discharge capacities exceeding 230 mAh/g. To mitigate these issues, we introduced a high-entropy engineering approach for LNO, exemplified by LiNi<sub>0.98</sub>Mo<sub>0.005</sub>Nb<sub>0.005</sub>Ti<sub>0.005</sub>Mg<sub>0.005</sub>O<sub>2</sub> (LNO-2 %HE). <em>In situ</em> XRD, synchrotron XAS and <em>ex situ</em> analyses reveal that the compositional complexity of LNO-2 %HE enhances structural disorder and amorphous character, which suppresses high-voltage phase transition. This design achieves 96.1 % capacity retention over 100 cycles at 25 °C and 97.5 % retention after 50 cycles at 45 °C, alongside an initial discharge capacity of 238 mAh/g at 0.1C. Furthermore, improved lattice oxygen stability in LNO-2 %HE inhibits oxygen release during thermal phase transitions, significantly enhancing safety. This strategy advances the viability of LNO cathode for high-energy-density batteries.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"26 ","pages":"Article 100493"},"PeriodicalIF":17.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace multi-cation high-entropy engineering enables ultra-stable cobalt-free LiNiO2 with >230 mAh/g\",\"authors\":\"Peng Zhang , Jinquan Liu , Qiqiang Huang , Yang Li , Yi Guo , Zuoguo Xiao , Chenxi Li , Lianghao Wen , Wei Peng , Weijing Yuan , Gaolong Zhu , Liang Yin , Longlong Fan , Lirong Zheng , Jing Zhang , Tiening Tan , Jianfeng Hua , Dongsheng Ren , Languang Lu , Xiang Liu\",\"doi\":\"10.1016/j.etran.2025.100493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cobalt-free LiNiO<sub>2</sub> (LNO) cathode, composed solely of transition metal nickel, stands out as a prime candidate for next-generation commercial cathodes, offering an exceptional theoretical capacity of 275 mAh/g, cost efficiency, and environmental sustainability. Unlike LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>2</sub>O<sub>2</sub> (NMC) counterparts, LiNiO<sub>2</sub> (LNO) cathode is plagued by rapid capacity degradation and safety risks due to absence of Co/Mn, which act as structural stabilizers ('rivets') in transition metal layer. This deficiency induces severe anisotropic lattice distortion and multi-phase transitions during charge/discharge cycles. These distortions are exacerbated at elevated temperatures (>45 °C) and at high de-lithiation state with initial discharge capacities exceeding 230 mAh/g. To mitigate these issues, we introduced a high-entropy engineering approach for LNO, exemplified by LiNi<sub>0.98</sub>Mo<sub>0.005</sub>Nb<sub>0.005</sub>Ti<sub>0.005</sub>Mg<sub>0.005</sub>O<sub>2</sub> (LNO-2 %HE). <em>In situ</em> XRD, synchrotron XAS and <em>ex situ</em> analyses reveal that the compositional complexity of LNO-2 %HE enhances structural disorder and amorphous character, which suppresses high-voltage phase transition. This design achieves 96.1 % capacity retention over 100 cycles at 25 °C and 97.5 % retention after 50 cycles at 45 °C, alongside an initial discharge capacity of 238 mAh/g at 0.1C. Furthermore, improved lattice oxygen stability in LNO-2 %HE inhibits oxygen release during thermal phase transitions, significantly enhancing safety. This strategy advances the viability of LNO cathode for high-energy-density batteries.</div></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"26 \",\"pages\":\"Article 100493\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116825001006\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825001006","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The cobalt-free LiNiO2 (LNO) cathode, composed solely of transition metal nickel, stands out as a prime candidate for next-generation commercial cathodes, offering an exceptional theoretical capacity of 275 mAh/g, cost efficiency, and environmental sustainability. Unlike LiNixMnyCo2O2 (NMC) counterparts, LiNiO2 (LNO) cathode is plagued by rapid capacity degradation and safety risks due to absence of Co/Mn, which act as structural stabilizers ('rivets') in transition metal layer. This deficiency induces severe anisotropic lattice distortion and multi-phase transitions during charge/discharge cycles. These distortions are exacerbated at elevated temperatures (>45 °C) and at high de-lithiation state with initial discharge capacities exceeding 230 mAh/g. To mitigate these issues, we introduced a high-entropy engineering approach for LNO, exemplified by LiNi0.98Mo0.005Nb0.005Ti0.005Mg0.005O2 (LNO-2 %HE). In situ XRD, synchrotron XAS and ex situ analyses reveal that the compositional complexity of LNO-2 %HE enhances structural disorder and amorphous character, which suppresses high-voltage phase transition. This design achieves 96.1 % capacity retention over 100 cycles at 25 °C and 97.5 % retention after 50 cycles at 45 °C, alongside an initial discharge capacity of 238 mAh/g at 0.1C. Furthermore, improved lattice oxygen stability in LNO-2 %HE inhibits oxygen release during thermal phase transitions, significantly enhancing safety. This strategy advances the viability of LNO cathode for high-energy-density batteries.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.