Moez Maghrebi , Giuseppe Mannino , Noemi Gatti , Francesco Caldo , Michele Pesenti , Fabio Francesco Nocito , Stefania Astolfi , Gianpiero Vigani
{"title":"结合离子组学和靶向代谢组学鉴定硬粒小麦(Triticum durum Desf.)基因型干旱响应的关键标记","authors":"Moez Maghrebi , Giuseppe Mannino , Noemi Gatti , Francesco Caldo , Michele Pesenti , Fabio Francesco Nocito , Stefania Astolfi , Gianpiero Vigani","doi":"10.1016/j.stress.2025.101044","DOIUrl":null,"url":null,"abstract":"<div><div>Drought is an environmental constrains limiting plant growth and reduce crop yield, particularly impacting durum wheat cultivation in the Mediterranean region. This research examined the adaptive mechanisms employed by various durum wheat genotypes in response to drought stress conditions. A comprehensive analysis identified significant markers that differentiate the genotypes' responses to drought, revealing a complex interaction of traits that enhance drought tolerance. Notably, 14 markers reflecting drought effects and 16 markers associated with genotype variations were identified. The analysis categorized the genotypes into distinct groups based on their tolerance to drought and metabolic dynamics. The tolerant genotypes, including BULEL, SVEVO, and SVEMS16, demonstrate lower plasticity and stable performance under drought, employing unique strategies such as enhanced ion homeostasis, stress-responsive gene regulation (e.g., <em>TdDHN15.3</em>), and lipid adjustments. SVEMS1 displayed tolerance through compensatory mechanisms, while older varieties (S.CAP, ETRUSCO) showed shared vulnerabilities, including disrupted nutrient uptake and reduced stress signaling. Overall, this research elucidates the interplay of multiple traits in drought adaptation, offering key markers for breeding resilient wheat genotypes to enhance food security in water-limited regions.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"18 ","pages":"Article 101044"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating ionomics and targeted metabolomics to identify key markers of drought responses in durum wheat (Triticum durum Desf.) genotypes\",\"authors\":\"Moez Maghrebi , Giuseppe Mannino , Noemi Gatti , Francesco Caldo , Michele Pesenti , Fabio Francesco Nocito , Stefania Astolfi , Gianpiero Vigani\",\"doi\":\"10.1016/j.stress.2025.101044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drought is an environmental constrains limiting plant growth and reduce crop yield, particularly impacting durum wheat cultivation in the Mediterranean region. This research examined the adaptive mechanisms employed by various durum wheat genotypes in response to drought stress conditions. A comprehensive analysis identified significant markers that differentiate the genotypes' responses to drought, revealing a complex interaction of traits that enhance drought tolerance. Notably, 14 markers reflecting drought effects and 16 markers associated with genotype variations were identified. The analysis categorized the genotypes into distinct groups based on their tolerance to drought and metabolic dynamics. The tolerant genotypes, including BULEL, SVEVO, and SVEMS16, demonstrate lower plasticity and stable performance under drought, employing unique strategies such as enhanced ion homeostasis, stress-responsive gene regulation (e.g., <em>TdDHN15.3</em>), and lipid adjustments. SVEMS1 displayed tolerance through compensatory mechanisms, while older varieties (S.CAP, ETRUSCO) showed shared vulnerabilities, including disrupted nutrient uptake and reduced stress signaling. Overall, this research elucidates the interplay of multiple traits in drought adaptation, offering key markers for breeding resilient wheat genotypes to enhance food security in water-limited regions.</div></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"18 \",\"pages\":\"Article 101044\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X25003124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X25003124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integrating ionomics and targeted metabolomics to identify key markers of drought responses in durum wheat (Triticum durum Desf.) genotypes
Drought is an environmental constrains limiting plant growth and reduce crop yield, particularly impacting durum wheat cultivation in the Mediterranean region. This research examined the adaptive mechanisms employed by various durum wheat genotypes in response to drought stress conditions. A comprehensive analysis identified significant markers that differentiate the genotypes' responses to drought, revealing a complex interaction of traits that enhance drought tolerance. Notably, 14 markers reflecting drought effects and 16 markers associated with genotype variations were identified. The analysis categorized the genotypes into distinct groups based on their tolerance to drought and metabolic dynamics. The tolerant genotypes, including BULEL, SVEVO, and SVEMS16, demonstrate lower plasticity and stable performance under drought, employing unique strategies such as enhanced ion homeostasis, stress-responsive gene regulation (e.g., TdDHN15.3), and lipid adjustments. SVEMS1 displayed tolerance through compensatory mechanisms, while older varieties (S.CAP, ETRUSCO) showed shared vulnerabilities, including disrupted nutrient uptake and reduced stress signaling. Overall, this research elucidates the interplay of multiple traits in drought adaptation, offering key markers for breeding resilient wheat genotypes to enhance food security in water-limited regions.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.