Kamal Dliou , Hicham El Boujaoui , Dwi Agustin Retnowardani
{"title":"关于L(2,1)的Griggs和Yeh猜想的一个证明——迭代mycielskian的标记","authors":"Kamal Dliou , Hicham El Boujaoui , Dwi Agustin Retnowardani","doi":"10.1016/j.dam.2025.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>In a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, a function <span><math><mi>f</mi></math></span> from the vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> to the set of all nonnegative integers is called an <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labeling of <span><math><mi>G</mi></math></span>, if it satisfies the following conditions for any two vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>, <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span> when <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> when <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> denotes the distance between the vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>G</mi></math></span>. The span of <span><math><mi>f</mi></math></span> is the difference between the largest and the smallest label used by <span><math><mi>f</mi></math></span>. The <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labeling number of <span><math><mi>G</mi></math></span> is the minimum span over all <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labelings of <span><math><mi>G</mi></math></span>, it is denoted by <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In 1992, Griggs and Yeh conjectured that for any graph <span><math><mi>G</mi></math></span> of maximum degree <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>, the inequality <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> holds. This conjecture has been extensively studied over the past decades and solved in numerous specific cases, yet it remains unsolved in general. In Dliou et al. (2024), the authors studied the <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labeling number of the iterated Mycielskian of graphs. The statement of Griggs and Yeh’s conjecture led them to conjecture that for any <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we have <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the <span><math><mi>t</mi></math></span>th iterated Mycielskian of a simple graph <span><math><mi>G</mi></math></span>. In this note, we prove this conjecture for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. Moreover, we show that for <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the upper bound <span><math><mrow><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> is achieved only when <span><math><mi>G</mi></math></span> is a single edge or a diameter 2 Moore graph, which exist only when <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo></mrow></math></span> and perhaps for <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>57</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 516-522"},"PeriodicalIF":1.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof of a version of Griggs and Yeh’s conjecture for L(2,1)-labeling of iterated Mycielskians\",\"authors\":\"Kamal Dliou , Hicham El Boujaoui , Dwi Agustin Retnowardani\",\"doi\":\"10.1016/j.dam.2025.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, a function <span><math><mi>f</mi></math></span> from the vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> to the set of all nonnegative integers is called an <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labeling of <span><math><mi>G</mi></math></span>, if it satisfies the following conditions for any two vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>, <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span> when <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> when <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> denotes the distance between the vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> in <span><math><mi>G</mi></math></span>. The span of <span><math><mi>f</mi></math></span> is the difference between the largest and the smallest label used by <span><math><mi>f</mi></math></span>. The <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labeling number of <span><math><mi>G</mi></math></span> is the minimum span over all <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labelings of <span><math><mi>G</mi></math></span>, it is denoted by <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In 1992, Griggs and Yeh conjectured that for any graph <span><math><mi>G</mi></math></span> of maximum degree <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>, the inequality <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> holds. This conjecture has been extensively studied over the past decades and solved in numerous specific cases, yet it remains unsolved in general. In Dliou et al. (2024), the authors studied the <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>-labeling number of the iterated Mycielskian of graphs. The statement of Griggs and Yeh’s conjecture led them to conjecture that for any <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, we have <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the <span><math><mi>t</mi></math></span>th iterated Mycielskian of a simple graph <span><math><mi>G</mi></math></span>. In this note, we prove this conjecture for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. Moreover, we show that for <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the upper bound <span><math><mrow><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> is achieved only when <span><math><mi>G</mi></math></span> is a single edge or a diameter 2 Moore graph, which exist only when <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo></mrow></math></span> and perhaps for <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>57</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 516-522\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005736\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005736","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在图G=(V(G),E(G))中,从顶点集合V(G)到所有非负整数集合的函数f称为G的L(2,1)-标记,如果它对任意两个顶点x和y满足以下条件,当dG(x,y)=1时,|f(x)−f(y)|≥2,当dG(x,y)=2时,|f(x)−f(y)|≥1,其中dG(x,y)表示G中顶点x和y之间的距离。f的张成空间是f使用的最大和最小标记之间的差值。G的L(2,1)个标记数是G的所有L(2,1)个标记的最小张成空间,用λ2,1(G)表示。1992年,Griggs和Yeh推测,对于任意最大次为Δ(G)≥2的图G,不等式λ2,1(G)≤Δ(G)2成立。在过去的几十年里,人们对这个猜想进行了广泛的研究,并在许多具体的案例中得到了解决,但总的来说,它仍然没有得到解决。在Dliou et al.(2024)中,作者研究了图的迭代Mycielskian的L(2,1)标记数。Griggs和Yeh猜想的陈述使他们猜想,对于任何t≥1,我们有λ2,1(Mt(G))≤(2t - 1)(|G|+1)+Δ(G)2,其中Mt(G)表示简单图G的第n次迭代Mycielskian。在本文中,我们证明了对于所有t≥2的猜想。此外,我们证明了当t≥2时,上界(2t−1)(|G|+1)+Δ(G)2仅在G是单边或直径为2的摩尔图时才存在,这仅在Δ(G)=2,3,7和Δ(G)=57时才存在。
A proof of a version of Griggs and Yeh’s conjecture for L(2,1)-labeling of iterated Mycielskians
In a graph , a function from the vertex set to the set of all nonnegative integers is called an -labeling of , if it satisfies the following conditions for any two vertices and , when , and when , where denotes the distance between the vertices and in . The span of is the difference between the largest and the smallest label used by . The -labeling number of is the minimum span over all -labelings of , it is denoted by . In 1992, Griggs and Yeh conjectured that for any graph of maximum degree , the inequality holds. This conjecture has been extensively studied over the past decades and solved in numerous specific cases, yet it remains unsolved in general. In Dliou et al. (2024), the authors studied the -labeling number of the iterated Mycielskian of graphs. The statement of Griggs and Yeh’s conjecture led them to conjecture that for any , we have , where denotes the th iterated Mycielskian of a simple graph . In this note, we prove this conjecture for all . Moreover, we show that for , the upper bound is achieved only when is a single edge or a diameter 2 Moore graph, which exist only when and perhaps for .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.