Deng Luo , Alexandre Kouyoumdjian , Ondřej Strnad , Haichao Miao , Ivan Barišić , Tobias Isenberg , Ivan Viola
{"title":"用于分析DNA纳米技术模拟的多尺度时间依赖视觉抽象框架","authors":"Deng Luo , Alexandre Kouyoumdjian , Ondřej Strnad , Haichao Miao , Ivan Barišić , Tobias Isenberg , Ivan Viola","doi":"10.1016/j.cag.2025.104376","DOIUrl":null,"url":null,"abstract":"<div><div>We present an open-source framework, SynopFrame, that allows DNA nanotechnology (DNA-nano) experts to analyze and understand molecular dynamics simulation trajectories of their designs. We use a multiscale multi-dimensional abstraction space, connect the representations to a projected conformational space plot of the structure’s temporal sequence, and thus enable experts to analyze the dynamics of their structural designs and, specifically, failure cases of the assembly. In addition, our time-dependent abstraction representation allows the biologists, for the first time in a smooth and structurally clear way, to identify and observe temporal transitions of a DNA-nano design from one configuration to another, and to highlight important periods of the simulation for further analysis. We realize SynopFrame as a dashboard of the different synchronized 3D spatial and 2D schematic visual representations, with a color overlay to show essential properties such as the status of hydrogen bonds. The linking of the spatial, schematic, and abstract views ensures that users can effectively analyze the high-frequency motion. We also categorize the status of the hydrogen bonds into a new format to allow us to color-encode it and overlay it on the representations. To demonstrate the utility of SynopFrame, we describe example usage scenarios and report user feedback.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104376"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SynopFrame: Multiscale time-dependent visual abstraction framework for analyzing DNA nanotechnology simulations\",\"authors\":\"Deng Luo , Alexandre Kouyoumdjian , Ondřej Strnad , Haichao Miao , Ivan Barišić , Tobias Isenberg , Ivan Viola\",\"doi\":\"10.1016/j.cag.2025.104376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an open-source framework, SynopFrame, that allows DNA nanotechnology (DNA-nano) experts to analyze and understand molecular dynamics simulation trajectories of their designs. We use a multiscale multi-dimensional abstraction space, connect the representations to a projected conformational space plot of the structure’s temporal sequence, and thus enable experts to analyze the dynamics of their structural designs and, specifically, failure cases of the assembly. In addition, our time-dependent abstraction representation allows the biologists, for the first time in a smooth and structurally clear way, to identify and observe temporal transitions of a DNA-nano design from one configuration to another, and to highlight important periods of the simulation for further analysis. We realize SynopFrame as a dashboard of the different synchronized 3D spatial and 2D schematic visual representations, with a color overlay to show essential properties such as the status of hydrogen bonds. The linking of the spatial, schematic, and abstract views ensures that users can effectively analyze the high-frequency motion. We also categorize the status of the hydrogen bonds into a new format to allow us to color-encode it and overlay it on the representations. To demonstrate the utility of SynopFrame, we describe example usage scenarios and report user feedback.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"132 \",\"pages\":\"Article 104376\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325002171\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325002171","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
SynopFrame: Multiscale time-dependent visual abstraction framework for analyzing DNA nanotechnology simulations
We present an open-source framework, SynopFrame, that allows DNA nanotechnology (DNA-nano) experts to analyze and understand molecular dynamics simulation trajectories of their designs. We use a multiscale multi-dimensional abstraction space, connect the representations to a projected conformational space plot of the structure’s temporal sequence, and thus enable experts to analyze the dynamics of their structural designs and, specifically, failure cases of the assembly. In addition, our time-dependent abstraction representation allows the biologists, for the first time in a smooth and structurally clear way, to identify and observe temporal transitions of a DNA-nano design from one configuration to another, and to highlight important periods of the simulation for further analysis. We realize SynopFrame as a dashboard of the different synchronized 3D spatial and 2D schematic visual representations, with a color overlay to show essential properties such as the status of hydrogen bonds. The linking of the spatial, schematic, and abstract views ensures that users can effectively analyze the high-frequency motion. We also categorize the status of the hydrogen bonds into a new format to allow us to color-encode it and overlay it on the representations. To demonstrate the utility of SynopFrame, we describe example usage scenarios and report user feedback.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.