{"title":"通过流媒体中的机器学习分类实现可解释的电子竞技胜利预测","authors":"Silvia García-Méndez, Francisco de Arriba-Pérez","doi":"10.1016/j.entcom.2025.101027","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing number of spectators and players in e-sports, along with the development of optimized communication solutions and cloud computing technology, has motivated the constant growth of the online game industry. Even though Artificial Intelligence-based solutions for e-sports analytics are traditionally defined as extracting meaningful patterns from related data and visualizing them to enhance decision-making, most of the effort in professional winning prediction has been focused on the classification aspect from a batch perspective, also leaving aside the visualization techniques. Consequently, this work contributes to an explainable win prediction classification solution in streaming in which input data is controlled over several sliding windows to reflect relevant game changes. Experimental results attained an accuracy higher than 90%, surpassing the performance of competing solutions in the literature. Ultimately, our system can be leveraged by ranking and recommender systems for informed decision-making, thanks to the explainability module, which fosters trust in the outcome predictions.</div></div>","PeriodicalId":55997,"journal":{"name":"Entertainment Computing","volume":"55 ","pages":"Article 101027"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable e-sports win prediction through Machine Learning classification in streaming\",\"authors\":\"Silvia García-Méndez, Francisco de Arriba-Pérez\",\"doi\":\"10.1016/j.entcom.2025.101027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing number of spectators and players in e-sports, along with the development of optimized communication solutions and cloud computing technology, has motivated the constant growth of the online game industry. Even though Artificial Intelligence-based solutions for e-sports analytics are traditionally defined as extracting meaningful patterns from related data and visualizing them to enhance decision-making, most of the effort in professional winning prediction has been focused on the classification aspect from a batch perspective, also leaving aside the visualization techniques. Consequently, this work contributes to an explainable win prediction classification solution in streaming in which input data is controlled over several sliding windows to reflect relevant game changes. Experimental results attained an accuracy higher than 90%, surpassing the performance of competing solutions in the literature. Ultimately, our system can be leveraged by ranking and recommender systems for informed decision-making, thanks to the explainability module, which fosters trust in the outcome predictions.</div></div>\",\"PeriodicalId\":55997,\"journal\":{\"name\":\"Entertainment Computing\",\"volume\":\"55 \",\"pages\":\"Article 101027\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entertainment Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875952125001077\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entertainment Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875952125001077","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Explainable e-sports win prediction through Machine Learning classification in streaming
The increasing number of spectators and players in e-sports, along with the development of optimized communication solutions and cloud computing technology, has motivated the constant growth of the online game industry. Even though Artificial Intelligence-based solutions for e-sports analytics are traditionally defined as extracting meaningful patterns from related data and visualizing them to enhance decision-making, most of the effort in professional winning prediction has been focused on the classification aspect from a batch perspective, also leaving aside the visualization techniques. Consequently, this work contributes to an explainable win prediction classification solution in streaming in which input data is controlled over several sliding windows to reflect relevant game changes. Experimental results attained an accuracy higher than 90%, surpassing the performance of competing solutions in the literature. Ultimately, our system can be leveraged by ranking and recommender systems for informed decision-making, thanks to the explainability module, which fosters trust in the outcome predictions.
期刊介绍:
Entertainment Computing publishes original, peer-reviewed research articles and serves as a forum for stimulating and disseminating innovative research ideas, emerging technologies, empirical investigations, state-of-the-art methods and tools in all aspects of digital entertainment, new media, entertainment computing, gaming, robotics, toys and applications among researchers, engineers, social scientists, artists and practitioners. Theoretical, technical, empirical, survey articles and case studies are all appropriate to the journal.