船用柴油微点燃双燃料发动机燃烧控制的数据驱动多目标优化:解决氮氧化物效率权衡问题

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Junyang Xie , Chong Yao , Bo Wang , Chendong Wu , Yusong Wang , Enzhe Song
{"title":"船用柴油微点燃双燃料发动机燃烧控制的数据驱动多目标优化:解决氮氧化物效率权衡问题","authors":"Junyang Xie ,&nbsp;Chong Yao ,&nbsp;Bo Wang ,&nbsp;Chendong Wu ,&nbsp;Yusong Wang ,&nbsp;Enzhe Song","doi":"10.1016/j.applthermaleng.2025.128635","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of pre-injection strategies on combustion characteristics, emission performance, and fuel efficiency in diesel-micro-piloted natural gas engines based on modified marine high-pressure common rail diesel engines. Experimental results demonstrate that pre-injecting diesel under this micro-pilot dual-fuel operation significantly accelerates natural gas combustion, resulting in an 87.36 % increase in NOx emissions. This reveals a critical pitfall: a strategy designed to create a more homogeneous, low-temperature combustion mode instead triggers a high-temperature combustion event, contradicting the expected benefits of such a strategy. While high-pressure main injection alone can achieve a more desirable two-stage heat release profile, its thermal efficiency remains unsatisfactory. Through data-driven modeling (Gaussian Process Regression/XGBoost) and multi-objective optimization (NSGA-II), the research identifies speed-dependent optimal control strategies. The optimized system achieves NOx emissions as low as 1.7 g/kWh at medium speed and below 2.1 g/kWh across all tested speed ranges, successfully meeting IMO Tier III standards while maintaining brake thermal efficiency (BTE) above 40 % (specifically, between 40.5 % and 41.8 %). These findings provide critical references for retrofitting and calibrating diesel-micro-piloted natural gas engines in marine applications.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"281 ","pages":"Article 128635"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven multi-objective optimization for combustion control in marine diesel- micro-ignited dual-fuel engines: resolving the NOx-efficiency trade-off\",\"authors\":\"Junyang Xie ,&nbsp;Chong Yao ,&nbsp;Bo Wang ,&nbsp;Chendong Wu ,&nbsp;Yusong Wang ,&nbsp;Enzhe Song\",\"doi\":\"10.1016/j.applthermaleng.2025.128635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the impact of pre-injection strategies on combustion characteristics, emission performance, and fuel efficiency in diesel-micro-piloted natural gas engines based on modified marine high-pressure common rail diesel engines. Experimental results demonstrate that pre-injecting diesel under this micro-pilot dual-fuel operation significantly accelerates natural gas combustion, resulting in an 87.36 % increase in NOx emissions. This reveals a critical pitfall: a strategy designed to create a more homogeneous, low-temperature combustion mode instead triggers a high-temperature combustion event, contradicting the expected benefits of such a strategy. While high-pressure main injection alone can achieve a more desirable two-stage heat release profile, its thermal efficiency remains unsatisfactory. Through data-driven modeling (Gaussian Process Regression/XGBoost) and multi-objective optimization (NSGA-II), the research identifies speed-dependent optimal control strategies. The optimized system achieves NOx emissions as low as 1.7 g/kWh at medium speed and below 2.1 g/kWh across all tested speed ranges, successfully meeting IMO Tier III standards while maintaining brake thermal efficiency (BTE) above 40 % (specifically, between 40.5 % and 41.8 %). These findings provide critical references for retrofitting and calibrating diesel-micro-piloted natural gas engines in marine applications.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"281 \",\"pages\":\"Article 128635\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125032272\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125032272","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了预喷射策略对基于船用高压共轨柴油机的柴油微导天然气发动机燃烧特性、排放性能和燃油效率的影响。实验结果表明,在该微先导双燃料工况下,预喷柴油可显著加速天然气燃烧,NOx排放量增加87.36%。这揭示了一个关键的陷阱:一种旨在创造更均匀的低温燃烧模式的策略反而引发了高温燃烧事件,与这种策略的预期好处相矛盾。虽然单独高压主喷射可以实现更理想的两级放热剖面,但其热效率仍然令人不满意。通过数据驱动建模(高斯过程回归/XGBoost)和多目标优化(NSGA-II),研究确定了与速度相关的最优控制策略。优化后的系统在中速下NOx排放量低至1.7 g/kWh,在所有测试速度范围内均低于2.1 g/kWh,成功满足IMO III级标准,同时将制动热效率(BTE)保持在40%以上(具体而言,介于40.5%至41.8%之间)。这些发现为船用柴油微导天然气发动机的改造和校准提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven multi-objective optimization for combustion control in marine diesel- micro-ignited dual-fuel engines: resolving the NOx-efficiency trade-off
This study investigates the impact of pre-injection strategies on combustion characteristics, emission performance, and fuel efficiency in diesel-micro-piloted natural gas engines based on modified marine high-pressure common rail diesel engines. Experimental results demonstrate that pre-injecting diesel under this micro-pilot dual-fuel operation significantly accelerates natural gas combustion, resulting in an 87.36 % increase in NOx emissions. This reveals a critical pitfall: a strategy designed to create a more homogeneous, low-temperature combustion mode instead triggers a high-temperature combustion event, contradicting the expected benefits of such a strategy. While high-pressure main injection alone can achieve a more desirable two-stage heat release profile, its thermal efficiency remains unsatisfactory. Through data-driven modeling (Gaussian Process Regression/XGBoost) and multi-objective optimization (NSGA-II), the research identifies speed-dependent optimal control strategies. The optimized system achieves NOx emissions as low as 1.7 g/kWh at medium speed and below 2.1 g/kWh across all tested speed ranges, successfully meeting IMO Tier III standards while maintaining brake thermal efficiency (BTE) above 40 % (specifically, between 40.5 % and 41.8 %). These findings provide critical references for retrofitting and calibrating diesel-micro-piloted natural gas engines in marine applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信