从镍希夫碱分子前体到NiO/还原氧化石墨烯功能纳米复合材料:高性能超级电容器电极的定制路线

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Yousra Boudad , Mehdi Salmi , Et-touhami Es-sebbar , Thierry Roisnel , Zaina Zaroual , Abdelhakim Elmakssoudi , Sanae El Ghachtouli
{"title":"从镍希夫碱分子前体到NiO/还原氧化石墨烯功能纳米复合材料:高性能超级电容器电极的定制路线","authors":"Yousra Boudad ,&nbsp;Mehdi Salmi ,&nbsp;Et-touhami Es-sebbar ,&nbsp;Thierry Roisnel ,&nbsp;Zaina Zaroual ,&nbsp;Abdelhakim Elmakssoudi ,&nbsp;Sanae El Ghachtouli","doi":"10.1016/j.jelechem.2025.119499","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel oxide (NiO) nanoparticles were synthesized via thermal decomposition of a one-pot salicylideneamine nickel complex (Ni(L<sub>1</sub>)<sub>2</sub>), serving as a molecularly defined precursor. This coordination chemistry-based approach enables the direct transformation from complex to oxide, providing enhanced control over purity and particle size. The resulting NiO nanoparticles were uniformly incorporated onto reduced graphene oxide matrix (rGO) through a controlled calcination process at 450 °C. The resulting NiO/rGO composite demonstrated superior charge storage behavior relative to unmodified NiO. Specifically, it achieved a capacitance reaching 2850 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> in a 1 M KOH electrolyte, notably outperforming the 1796 F g<sup>−1</sup> obtained for pristine NiO. Moreover, the NiO/rGO electrode retained 84 % of its initial storage capability following 500 continuous charging and discharging cycles, demonstrating notable durability across cycles. Upon integration into a hybrid-type supercapacitor system, the NiO/rGO deposited on nickel foam functioned as the negative electrode, with activated carbon acting as the positive counterpart. This configuration achieved an energy density of 119.27 Wh kg<sup>−1</sup> alongside a power density of 750 W kg<sup>−1</sup>. Even after 1000 cycles, the device preserved 75 % of its initial electrochemical performance, emphasizing the strong applicability of NiO/rGO composites as robust, high-efficiency electrodes for advanced energy storage applications.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"998 ","pages":"Article 119499"},"PeriodicalIF":4.1000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From nickel schiff base molecular precursor to NiO/rGO functional nanocomposite: A tailored route for high-performance supercapacitor electrodes\",\"authors\":\"Yousra Boudad ,&nbsp;Mehdi Salmi ,&nbsp;Et-touhami Es-sebbar ,&nbsp;Thierry Roisnel ,&nbsp;Zaina Zaroual ,&nbsp;Abdelhakim Elmakssoudi ,&nbsp;Sanae El Ghachtouli\",\"doi\":\"10.1016/j.jelechem.2025.119499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nickel oxide (NiO) nanoparticles were synthesized via thermal decomposition of a one-pot salicylideneamine nickel complex (Ni(L<sub>1</sub>)<sub>2</sub>), serving as a molecularly defined precursor. This coordination chemistry-based approach enables the direct transformation from complex to oxide, providing enhanced control over purity and particle size. The resulting NiO nanoparticles were uniformly incorporated onto reduced graphene oxide matrix (rGO) through a controlled calcination process at 450 °C. The resulting NiO/rGO composite demonstrated superior charge storage behavior relative to unmodified NiO. Specifically, it achieved a capacitance reaching 2850 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> in a 1 M KOH electrolyte, notably outperforming the 1796 F g<sup>−1</sup> obtained for pristine NiO. Moreover, the NiO/rGO electrode retained 84 % of its initial storage capability following 500 continuous charging and discharging cycles, demonstrating notable durability across cycles. Upon integration into a hybrid-type supercapacitor system, the NiO/rGO deposited on nickel foam functioned as the negative electrode, with activated carbon acting as the positive counterpart. This configuration achieved an energy density of 119.27 Wh kg<sup>−1</sup> alongside a power density of 750 W kg<sup>−1</sup>. Even after 1000 cycles, the device preserved 75 % of its initial electrochemical performance, emphasizing the strong applicability of NiO/rGO composites as robust, high-efficiency electrodes for advanced energy storage applications.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"998 \",\"pages\":\"Article 119499\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665725005739\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725005739","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用一锅水杨基二胺镍配合物(Ni(L1)2)热分解法制备了纳米氧化镍(NiO),作为分子定义的前驱体。这种基于配位化学的方法可以实现从络合物到氧化物的直接转化,从而增强了对纯度和粒度的控制。通过450°C的可控煅烧过程,将得到的NiO纳米颗粒均匀地结合到还原氧化石墨烯基体(rGO)上。得到的NiO/还原氧化石墨烯复合材料相对于未修饰的NiO表现出更好的电荷存储性能。具体来说,在1 M KOH电解液中,当电流密度为1 a g−1时,其电容达到2850 F g−1,明显优于原始NiO的1796 F g−1。此外,在500次连续充放电循环后,NiO/rGO电极保持了84%的初始存储能力,并表现出显著的跨循环耐久性。在集成到混合型超级电容器系统后,沉积在泡沫镍上的NiO/rGO作为负极,活性炭作为正极。该配置实现了119.27 Wh kg−1的能量密度和750 W kg−1的功率密度。即使在1000次循环后,该装置仍保持了75%的初始电化学性能,强调了NiO/rGO复合材料作为先进储能应用中坚固、高效电极的强大适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From nickel schiff base molecular precursor to NiO/rGO functional nanocomposite: A tailored route for high-performance supercapacitor electrodes
Nickel oxide (NiO) nanoparticles were synthesized via thermal decomposition of a one-pot salicylideneamine nickel complex (Ni(L1)2), serving as a molecularly defined precursor. This coordination chemistry-based approach enables the direct transformation from complex to oxide, providing enhanced control over purity and particle size. The resulting NiO nanoparticles were uniformly incorporated onto reduced graphene oxide matrix (rGO) through a controlled calcination process at 450 °C. The resulting NiO/rGO composite demonstrated superior charge storage behavior relative to unmodified NiO. Specifically, it achieved a capacitance reaching 2850 F g−1 at a current density of 1 A g−1 in a 1 M KOH electrolyte, notably outperforming the 1796 F g−1 obtained for pristine NiO. Moreover, the NiO/rGO electrode retained 84 % of its initial storage capability following 500 continuous charging and discharging cycles, demonstrating notable durability across cycles. Upon integration into a hybrid-type supercapacitor system, the NiO/rGO deposited on nickel foam functioned as the negative electrode, with activated carbon acting as the positive counterpart. This configuration achieved an energy density of 119.27 Wh kg−1 alongside a power density of 750 W kg−1. Even after 1000 cycles, the device preserved 75 % of its initial electrochemical performance, emphasizing the strong applicability of NiO/rGO composites as robust, high-efficiency electrodes for advanced energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信