一种制备NH4+- pedot共掺杂VxOy纳米针锌离子电池正极材料的新方法

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Filipp S. Volkov, Svetlana N. Eliseeva
{"title":"一种制备NH4+- pedot共掺杂VxOy纳米针锌离子电池正极材料的新方法","authors":"Filipp S. Volkov,&nbsp;Svetlana N. Eliseeva","doi":"10.1016/j.matlet.2025.139598","DOIUrl":null,"url":null,"abstract":"<div><div>A novel hydrothermal synthesis method has been developed for preparing an NH<sub>4</sub><sup>+</sup>-PEDOT-co-doped vanadium oxide (NVOP) cathode for zinc-ion batteries. Structural characterization reveals successful PEDOT (poly(3,4-ethylenedioxythiophene) intercalation within V<sub>x</sub>O<sub>y</sub> layers, evidenced by an expanded interlayer spacing (10.23 Å, XRD), homogeneous elemental distribution (EDX), and characteristic polymer signatures (FTIR/XPS). The NVOP-based cathode demonstrates excellent specific capacity, outperforming undoped NH<sub>4</sub>V<sub>3</sub>O<sub>8</sub> (NVO) by more than twofold across all current densities. Specifically, the NVOP cathode exhibits a high specific capacity of 403 mAh·g<sup>−1</sup> at 0.3 A·g<sup>−1</sup> and exceptional rate capability (246 mAh·g<sup>−1</sup> at 10 A·g<sup>−1</sup>). Furthermore, during long-term cycling at 1 A·g<sup>−1</sup>, NVOP maintained a specific capacity of 340 mAh·g<sup>−1</sup> by the 100th cycle without degradation.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"404 ","pages":"Article 139598"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for preparing NH4+-PEDOT-co-doped VxOy Nanoneedles as cathode material in zinc-ion batteries\",\"authors\":\"Filipp S. Volkov,&nbsp;Svetlana N. Eliseeva\",\"doi\":\"10.1016/j.matlet.2025.139598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel hydrothermal synthesis method has been developed for preparing an NH<sub>4</sub><sup>+</sup>-PEDOT-co-doped vanadium oxide (NVOP) cathode for zinc-ion batteries. Structural characterization reveals successful PEDOT (poly(3,4-ethylenedioxythiophene) intercalation within V<sub>x</sub>O<sub>y</sub> layers, evidenced by an expanded interlayer spacing (10.23 Å, XRD), homogeneous elemental distribution (EDX), and characteristic polymer signatures (FTIR/XPS). The NVOP-based cathode demonstrates excellent specific capacity, outperforming undoped NH<sub>4</sub>V<sub>3</sub>O<sub>8</sub> (NVO) by more than twofold across all current densities. Specifically, the NVOP cathode exhibits a high specific capacity of 403 mAh·g<sup>−1</sup> at 0.3 A·g<sup>−1</sup> and exceptional rate capability (246 mAh·g<sup>−1</sup> at 10 A·g<sup>−1</sup>). Furthermore, during long-term cycling at 1 A·g<sup>−1</sup>, NVOP maintained a specific capacity of 340 mAh·g<sup>−1</sup> by the 100th cycle without degradation.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"404 \",\"pages\":\"Article 139598\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25016283\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25016283","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种新的水热合成方法,用于制备锌离子电池用NH4+- pedot共掺杂氧化钒(NVOP)阴极。结构表征表明PEDOT(聚(3,4-乙烯二氧噻吩))成功嵌入VxOy层中,层间距扩大(10.23 Å, XRD),元素均匀分布(EDX)和特征聚合物特征(FTIR/XPS)证明了这一点。基于nvop的阴极具有优异的比容量,在所有电流密度下都比未掺杂的NH4V3O8 (NVO)高出两倍以上。具体来说,NVOP阴极在0.3 a·g−1时具有403 mAh·g−1的高比容量和在10 a·g−1时具有246 mAh·g−1的特殊倍率能力。此外,在1 A·g−1的长期循环中,NVOP在第100次循环时保持了340 mAh·g−1的比容量而没有退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel method for preparing NH4+-PEDOT-co-doped VxOy Nanoneedles as cathode material in zinc-ion batteries

A novel method for preparing NH4+-PEDOT-co-doped VxOy Nanoneedles as cathode material in zinc-ion batteries
A novel hydrothermal synthesis method has been developed for preparing an NH4+-PEDOT-co-doped vanadium oxide (NVOP) cathode for zinc-ion batteries. Structural characterization reveals successful PEDOT (poly(3,4-ethylenedioxythiophene) intercalation within VxOy layers, evidenced by an expanded interlayer spacing (10.23 Å, XRD), homogeneous elemental distribution (EDX), and characteristic polymer signatures (FTIR/XPS). The NVOP-based cathode demonstrates excellent specific capacity, outperforming undoped NH4V3O8 (NVO) by more than twofold across all current densities. Specifically, the NVOP cathode exhibits a high specific capacity of 403 mAh·g−1 at 0.3 A·g−1 and exceptional rate capability (246 mAh·g−1 at 10 A·g−1). Furthermore, during long-term cycling at 1 A·g−1, NVOP maintained a specific capacity of 340 mAh·g−1 by the 100th cycle without degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信