{"title":"正交Eu2CoMnO6双钙钛矿的结构、磁性和介电性能","authors":"Prachi Joshi , Anchit Modi , Jyoti Shukla , Shivani Khanna Kapoor , Ashutosh Mishra","doi":"10.1016/j.matlet.2025.139615","DOIUrl":null,"url":null,"abstract":"<div><div>Polycrystalline Eu₂CoMnO₆ (ECMO) was synthesized via the solid-state route and crystallizes in a high-purity orthorhombic Pbnm phase. Field Emission Scanning Electron Microscope (FESEM) analysis reveals uniform micrometer-sized grains, while Raman spectroscopy confirms characteristic (Co/Mn)O₆ octahedral vibrations, indicating a well-ordered lattice. Magnetic measurements show a ferromagnetic transition at Tc ≈ 89 K, with Curie-Weiss fitting yielding effective magnetic (μ<sub>eff</sub>) ≈ 15.1 μ<sub>B</sub>/f.u. and Curie-Weiss temperature (θ<sub>CW</sub>) ≈ 32 K, consistent with dominant Co<sup>2+</sup>-O<sup>2−</sup>-Mn<sup>4+</sup> superexchange, residual antiferromagnetic (AFM) interactions, and Griffiths-like clusters contributing to local magnetic disorder. M-H loops at 10 K indicate soft ferromagnetism with saturation magnetization (M<sub>s</sub>) ≈ 117.93 emu/g, remanent magnetization (M<sub>r</sub>) ≈ 23.148 emu/g, and coercive field (H<sub>c</sub>) ≈ 0.67 T. Dielectric studies reveal low-frequency interfacial dispersion and a stable high-frequency bulk response. The multifunctional behavior of ECMO arises from the interplay of intrinsic Co<img>Mn ordering and extrinsic microstructural effects.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"404 ","pages":"Article 139615"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, magnetic, and dielectric properties of orthorhombic Eu2CoMnO6 double perovskite\",\"authors\":\"Prachi Joshi , Anchit Modi , Jyoti Shukla , Shivani Khanna Kapoor , Ashutosh Mishra\",\"doi\":\"10.1016/j.matlet.2025.139615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycrystalline Eu₂CoMnO₆ (ECMO) was synthesized via the solid-state route and crystallizes in a high-purity orthorhombic Pbnm phase. Field Emission Scanning Electron Microscope (FESEM) analysis reveals uniform micrometer-sized grains, while Raman spectroscopy confirms characteristic (Co/Mn)O₆ octahedral vibrations, indicating a well-ordered lattice. Magnetic measurements show a ferromagnetic transition at Tc ≈ 89 K, with Curie-Weiss fitting yielding effective magnetic (μ<sub>eff</sub>) ≈ 15.1 μ<sub>B</sub>/f.u. and Curie-Weiss temperature (θ<sub>CW</sub>) ≈ 32 K, consistent with dominant Co<sup>2+</sup>-O<sup>2−</sup>-Mn<sup>4+</sup> superexchange, residual antiferromagnetic (AFM) interactions, and Griffiths-like clusters contributing to local magnetic disorder. M-H loops at 10 K indicate soft ferromagnetism with saturation magnetization (M<sub>s</sub>) ≈ 117.93 emu/g, remanent magnetization (M<sub>r</sub>) ≈ 23.148 emu/g, and coercive field (H<sub>c</sub>) ≈ 0.67 T. Dielectric studies reveal low-frequency interfacial dispersion and a stable high-frequency bulk response. The multifunctional behavior of ECMO arises from the interplay of intrinsic Co<img>Mn ordering and extrinsic microstructural effects.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"404 \",\"pages\":\"Article 139615\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25016453\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25016453","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural, magnetic, and dielectric properties of orthorhombic Eu2CoMnO6 double perovskite
Polycrystalline Eu₂CoMnO₆ (ECMO) was synthesized via the solid-state route and crystallizes in a high-purity orthorhombic Pbnm phase. Field Emission Scanning Electron Microscope (FESEM) analysis reveals uniform micrometer-sized grains, while Raman spectroscopy confirms characteristic (Co/Mn)O₆ octahedral vibrations, indicating a well-ordered lattice. Magnetic measurements show a ferromagnetic transition at Tc ≈ 89 K, with Curie-Weiss fitting yielding effective magnetic (μeff) ≈ 15.1 μB/f.u. and Curie-Weiss temperature (θCW) ≈ 32 K, consistent with dominant Co2+-O2−-Mn4+ superexchange, residual antiferromagnetic (AFM) interactions, and Griffiths-like clusters contributing to local magnetic disorder. M-H loops at 10 K indicate soft ferromagnetism with saturation magnetization (Ms) ≈ 117.93 emu/g, remanent magnetization (Mr) ≈ 23.148 emu/g, and coercive field (Hc) ≈ 0.67 T. Dielectric studies reveal low-frequency interfacial dispersion and a stable high-frequency bulk response. The multifunctional behavior of ECMO arises from the interplay of intrinsic CoMn ordering and extrinsic microstructural effects.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive