基于螺旋注入结构的新型熔盐储罐系统热分层机理分析

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Bingbing Fan , Junye Hua , Gui Li , Baolian Niu , Xianan Zeng , Hai Lan , Kaiyuan Huang
{"title":"基于螺旋注入结构的新型熔盐储罐系统热分层机理分析","authors":"Bingbing Fan ,&nbsp;Junye Hua ,&nbsp;Gui Li ,&nbsp;Baolian Niu ,&nbsp;Xianan Zeng ,&nbsp;Hai Lan ,&nbsp;Kaiyuan Huang","doi":"10.1016/j.applthermaleng.2025.128552","DOIUrl":null,"url":null,"abstract":"<div><div>Against the backdrop of challenges posed by conventional energy supply and the inherent intermittency of renewable sources, the development of high-performance energy storage technologies has become paramount for balancing energy supply and demand dynamics. This manuscript introduces a novel thermal storage system integrating a spiral folding plate with a stratified tank, where induced spiral molten salt flow enables bidirectional regulation to optimize both thermal stratification and flow characteristics. The study comprehensively evaluates the performance optimization of the spiral folding plate molten salt thermal storage tank through numerical simulations. The helical flow channel design demonstrates dual-regulation advantages: during charging, it suppresses mixing to refine temperature stratification from 3 to 5 distinct layers (deviation &lt;5 %) while maintaining a 1.7 m thermocline stability. During discharging, secondary vortices (diameter ≈1/3 tank radius) actively enhance mixing, reducing the high-temperature zone from 100 % to &lt;5 % within 60 min. Geometric parametric analysis reveals: (1) Increasing height-to-diameter ratio (h/d = 1 → 2.5) enhances helical stability, reducing thermocline thickness by 40 % (with a local temperature difference below 15 K) and improving charge/discharge efficiency by 7.1 %/7.8 %, with h/d≈2.5 tanks achieving 65 % initial discharge energy release; (2) Optimal inclination angle (5°) achieves a 92.5 % discharge efficiency with 3070 s/3030 s charge/discharge times, whereas angles &gt; 30° reduce efficiencies by 1.2 %/3.2 % and induce flow recirculation; (3) Spiral fractions of 10 ∼ 12 maximize performance with a 4.2 % charging efficiency gain and a 35 % flow resistance reduction, while fractions &gt; 20 cause flow resistance surges and thermal anomalies.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"281 ","pages":"Article 128552"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal stratification mechanism analysis of new molten salt storage tank system based on spiral infusion structure\",\"authors\":\"Bingbing Fan ,&nbsp;Junye Hua ,&nbsp;Gui Li ,&nbsp;Baolian Niu ,&nbsp;Xianan Zeng ,&nbsp;Hai Lan ,&nbsp;Kaiyuan Huang\",\"doi\":\"10.1016/j.applthermaleng.2025.128552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Against the backdrop of challenges posed by conventional energy supply and the inherent intermittency of renewable sources, the development of high-performance energy storage technologies has become paramount for balancing energy supply and demand dynamics. This manuscript introduces a novel thermal storage system integrating a spiral folding plate with a stratified tank, where induced spiral molten salt flow enables bidirectional regulation to optimize both thermal stratification and flow characteristics. The study comprehensively evaluates the performance optimization of the spiral folding plate molten salt thermal storage tank through numerical simulations. The helical flow channel design demonstrates dual-regulation advantages: during charging, it suppresses mixing to refine temperature stratification from 3 to 5 distinct layers (deviation &lt;5 %) while maintaining a 1.7 m thermocline stability. During discharging, secondary vortices (diameter ≈1/3 tank radius) actively enhance mixing, reducing the high-temperature zone from 100 % to &lt;5 % within 60 min. Geometric parametric analysis reveals: (1) Increasing height-to-diameter ratio (h/d = 1 → 2.5) enhances helical stability, reducing thermocline thickness by 40 % (with a local temperature difference below 15 K) and improving charge/discharge efficiency by 7.1 %/7.8 %, with h/d≈2.5 tanks achieving 65 % initial discharge energy release; (2) Optimal inclination angle (5°) achieves a 92.5 % discharge efficiency with 3070 s/3030 s charge/discharge times, whereas angles &gt; 30° reduce efficiencies by 1.2 %/3.2 % and induce flow recirculation; (3) Spiral fractions of 10 ∼ 12 maximize performance with a 4.2 % charging efficiency gain and a 35 % flow resistance reduction, while fractions &gt; 20 cause flow resistance surges and thermal anomalies.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"281 \",\"pages\":\"Article 128552\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125031448\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125031448","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在传统能源供应面临挑战和可再生能源固有间歇性的背景下,高性能储能技术的发展已成为平衡能源供需动态的重中之重。本文介绍了一种新型的储热系统,集成了螺旋折叠板和分层槽,其中诱导螺旋熔盐流动可以双向调节,以优化热分层和流动特性。通过数值模拟对螺旋折叠板熔盐储热罐的性能优化进行了综合评价。螺旋流道设计具有双重调节优势:在加注过程中,它抑制混合,将温度分层从3层细化到5层(偏差<; 5%),同时保持1.7 m的温跃层稳定性。在出料过程中,二次涡(直径≈1/3罐半径)积极促进混合,在60分钟内将高温区从100%降低到5%。几何参数分析表明:(1)增加高径比(h/d = 1→2.5)可以提高螺旋稳定性,使温跃层厚度减少40%(局部温差小于15 K),充放电效率提高7.1% / 7.8%,h/d≈2.5个储槽的初始放电能量释放率达到65%;(2)最佳倾角为5°时,充放电时间为3070 s/3030 s,充放电效率为92.5%,而倾角为>; 30°时,充放电效率降低1.2% / 3.2%,并产生再循环;(3)螺旋馏分10 ~ 12的性能最大化,充电效率提高4.2%,流动阻力降低35%,而馏分>; 20会导致流动阻力激增和热异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal stratification mechanism analysis of new molten salt storage tank system based on spiral infusion structure
Against the backdrop of challenges posed by conventional energy supply and the inherent intermittency of renewable sources, the development of high-performance energy storage technologies has become paramount for balancing energy supply and demand dynamics. This manuscript introduces a novel thermal storage system integrating a spiral folding plate with a stratified tank, where induced spiral molten salt flow enables bidirectional regulation to optimize both thermal stratification and flow characteristics. The study comprehensively evaluates the performance optimization of the spiral folding plate molten salt thermal storage tank through numerical simulations. The helical flow channel design demonstrates dual-regulation advantages: during charging, it suppresses mixing to refine temperature stratification from 3 to 5 distinct layers (deviation <5 %) while maintaining a 1.7 m thermocline stability. During discharging, secondary vortices (diameter ≈1/3 tank radius) actively enhance mixing, reducing the high-temperature zone from 100 % to <5 % within 60 min. Geometric parametric analysis reveals: (1) Increasing height-to-diameter ratio (h/d = 1 → 2.5) enhances helical stability, reducing thermocline thickness by 40 % (with a local temperature difference below 15 K) and improving charge/discharge efficiency by 7.1 %/7.8 %, with h/d≈2.5 tanks achieving 65 % initial discharge energy release; (2) Optimal inclination angle (5°) achieves a 92.5 % discharge efficiency with 3070 s/3030 s charge/discharge times, whereas angles > 30° reduce efficiencies by 1.2 %/3.2 % and induce flow recirculation; (3) Spiral fractions of 10 ∼ 12 maximize performance with a 4.2 % charging efficiency gain and a 35 % flow resistance reduction, while fractions > 20 cause flow resistance surges and thermal anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信