电动汽车电池用相变材料集成柱形散热器的热性能:实验与神经模糊分析

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
S. Babusanker , B. Girinath , V.V. Darshana , Rajesh Baby
{"title":"电动汽车电池用相变材料集成柱形散热器的热性能:实验与神经模糊分析","authors":"S. Babusanker ,&nbsp;B. Girinath ,&nbsp;V.V. Darshana ,&nbsp;Rajesh Baby","doi":"10.1016/j.applthermaleng.2025.128579","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal instability in prismatic lithium-ion batteries limits the lifespan, performance, and safety of electric vehicles. This study experimentally evaluates aluminium prismatic heat sinks with fin volume fractions of 0 %, 5 %, 10 %, and 14 %, filled with paraffin-based phase change material (melting point 36.5 °C), under heat inputs ranging from 8 to 23 W to simulate battery discharge. The 10 % fin configuration demonstrated the best performance among the tested cases. Incorporation of phase change material extended the time to reach 50 °C from 13 min (without phase change material) to 50 min. A 400-minute test at 20 W confirmed uniform temperature distribution within the molten phase change material, enabled by enhanced conduction and natural convection. To complement the experiments, an adaptive neuro-fuzzy inference system model was developed to predict (i) the time to reach 36 °C and (ii) the temperature after 120 min, using fin volume and heat input as input variables. The model achieved high accuracy, with an average absolute error of 6.50 % (3.78 min) for the time to reach 36 °C and 1.90 % (1.28 °C) for the temperature after 120 min. This combined experimental–computational approach minimizes the need for physical prototyping and delivers scalable design insights for efficient passive thermal management of prismatic battery modules. The integration of PCM-finned prismatic heat sinks with advanced modelling represents a novel contribution, offering practical pathways for the development of next-generation electric vehicle batteries.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"281 ","pages":"Article 128579"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of phase change material integrated prismatic heat sinks for electric vehicle batteries: experimental and neuro-fuzzy analysis\",\"authors\":\"S. Babusanker ,&nbsp;B. Girinath ,&nbsp;V.V. Darshana ,&nbsp;Rajesh Baby\",\"doi\":\"10.1016/j.applthermaleng.2025.128579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal instability in prismatic lithium-ion batteries limits the lifespan, performance, and safety of electric vehicles. This study experimentally evaluates aluminium prismatic heat sinks with fin volume fractions of 0 %, 5 %, 10 %, and 14 %, filled with paraffin-based phase change material (melting point 36.5 °C), under heat inputs ranging from 8 to 23 W to simulate battery discharge. The 10 % fin configuration demonstrated the best performance among the tested cases. Incorporation of phase change material extended the time to reach 50 °C from 13 min (without phase change material) to 50 min. A 400-minute test at 20 W confirmed uniform temperature distribution within the molten phase change material, enabled by enhanced conduction and natural convection. To complement the experiments, an adaptive neuro-fuzzy inference system model was developed to predict (i) the time to reach 36 °C and (ii) the temperature after 120 min, using fin volume and heat input as input variables. The model achieved high accuracy, with an average absolute error of 6.50 % (3.78 min) for the time to reach 36 °C and 1.90 % (1.28 °C) for the temperature after 120 min. This combined experimental–computational approach minimizes the need for physical prototyping and delivers scalable design insights for efficient passive thermal management of prismatic battery modules. The integration of PCM-finned prismatic heat sinks with advanced modelling represents a novel contribution, offering practical pathways for the development of next-generation electric vehicle batteries.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"281 \",\"pages\":\"Article 128579\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125031710\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125031710","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

棱柱形锂离子电池的热不稳定性限制了电动汽车的寿命、性能和安全性。本研究在8 ~ 23 W的热输入下,实验评估了铝棱柱形散热器的散热片体积分数分别为0%、5%、10%和14%,填充石蜡基相变材料(熔点36.5℃),以模拟电池放电。10% fin配置在测试用例中表现出最佳性能。相变材料的加入将达到50°C的时间从13分钟(不含相变材料)延长到50分钟。在20瓦下进行了400分钟的测试,通过增强的传导和自然对流,确认了熔融相变材料内的均匀温度分布。为了补充实验,开发了自适应神经模糊推理系统模型,以翅片体积和热量输入作为输入变量,预测(i)达到36°C的时间和(ii) 120 min后的温度。该模型具有较高的精度,达到36℃时的平均绝对误差为6.50% (3.78 min), 120 min后的平均绝对误差为1.90%(1.28℃)。这种实验与计算相结合的方法最大限度地减少了对物理原型的需求,并为柱状电池模块的高效被动热管理提供了可扩展的设计见解。pcm翅片棱镜散热器与先进模型的集成代表了一种新的贡献,为下一代电动汽车电池的开发提供了实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal performance of phase change material integrated prismatic heat sinks for electric vehicle batteries: experimental and neuro-fuzzy analysis
Thermal instability in prismatic lithium-ion batteries limits the lifespan, performance, and safety of electric vehicles. This study experimentally evaluates aluminium prismatic heat sinks with fin volume fractions of 0 %, 5 %, 10 %, and 14 %, filled with paraffin-based phase change material (melting point 36.5 °C), under heat inputs ranging from 8 to 23 W to simulate battery discharge. The 10 % fin configuration demonstrated the best performance among the tested cases. Incorporation of phase change material extended the time to reach 50 °C from 13 min (without phase change material) to 50 min. A 400-minute test at 20 W confirmed uniform temperature distribution within the molten phase change material, enabled by enhanced conduction and natural convection. To complement the experiments, an adaptive neuro-fuzzy inference system model was developed to predict (i) the time to reach 36 °C and (ii) the temperature after 120 min, using fin volume and heat input as input variables. The model achieved high accuracy, with an average absolute error of 6.50 % (3.78 min) for the time to reach 36 °C and 1.90 % (1.28 °C) for the temperature after 120 min. This combined experimental–computational approach minimizes the need for physical prototyping and delivers scalable design insights for efficient passive thermal management of prismatic battery modules. The integration of PCM-finned prismatic heat sinks with advanced modelling represents a novel contribution, offering practical pathways for the development of next-generation electric vehicle batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信