碱活化表面反应基团的锚定:双基团修饰的K+&Na+插层C3N5增强光催化H2O2生成

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yongyi Li, Wei Li, Zhigang Shao, Huiyang Xu, Shuanglong Li, Bo Wang, Xiaorui Huang, Shichao Jiao, Zhiwei Li
{"title":"碱活化表面反应基团的锚定:双基团修饰的K+&Na+插层C3N5增强光催化H2O2生成","authors":"Yongyi Li,&nbsp;Wei Li,&nbsp;Zhigang Shao,&nbsp;Huiyang Xu,&nbsp;Shuanglong Li,&nbsp;Bo Wang,&nbsp;Xiaorui Huang,&nbsp;Shichao Jiao,&nbsp;Zhiwei Li","doi":"10.1016/j.jpowsour.2025.238511","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic production of hydrogen peroxide from water is regarded as an environmentally benign technology for energy storage and supply. Herein, a disordered K&amp;Na-C<sub>3</sub>N<sub>5</sub> photocatalyst co-intercalated with K<sup>+</sup>&amp;Na<sup>+</sup> and modified by cyano/hydroxyl groups is successfully fabricated via alkali-activated thermal-polymerization. Alkali activation effectively anchors cyano and hydroxyl active groups on the surface: hydroxyl groups enhance the material's hydrophilicity and promote proton transfer, while cyano groups exhibit electron-attracting characteristics to localize photogenerated electrons. Simultaneously, interlayer intercalation of K<sup>+</sup>&amp;Na<sup>+</sup> forms electron transport channels, synergistically facilitating surface proton transfer and optimizing charge distribution. This multi-component modification strategy significantly enhances the adsorption capacity of O<sub>2</sub>, effectively modulates the 2e<sup>−</sup>ORR pathway, and improves the selectivity of H<sub>2</sub>O<sub>2</sub>, demonstrating its excellent bifunctional properties. Experimental data show that the optimally alkali-activated K<sub>3</sub>&amp;Na<sub>3</sub>-C<sub>3</sub>N<sub>5</sub> achieves a remarkably high H<sub>2</sub>O<sub>2</sub> production rate of 26,920.49 μmol g<sup>−1</sup>·h<sup>−1</sup>— a 90.3-fold increase over unmodified C<sub>3</sub>N<sub>5</sub>. This work pioneers alkali activation as a universal and scalable paradigm for engineering surface-active sites to enable performance amplification through functional group-metal ion cooperativity, and it provides a design blueprint for advanced carbon nitride-based photocatalysts to boost H<sub>2</sub>O<sub>2</sub> fuel cell performance.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"660 ","pages":"Article 238511"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anchoring of alkali-activated surface reactive groups: Dual-groups modified K+&Na+- intercalated C3N5 for enhanced photocatalytic H2O2 production\",\"authors\":\"Yongyi Li,&nbsp;Wei Li,&nbsp;Zhigang Shao,&nbsp;Huiyang Xu,&nbsp;Shuanglong Li,&nbsp;Bo Wang,&nbsp;Xiaorui Huang,&nbsp;Shichao Jiao,&nbsp;Zhiwei Li\",\"doi\":\"10.1016/j.jpowsour.2025.238511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalytic production of hydrogen peroxide from water is regarded as an environmentally benign technology for energy storage and supply. Herein, a disordered K&amp;Na-C<sub>3</sub>N<sub>5</sub> photocatalyst co-intercalated with K<sup>+</sup>&amp;Na<sup>+</sup> and modified by cyano/hydroxyl groups is successfully fabricated via alkali-activated thermal-polymerization. Alkali activation effectively anchors cyano and hydroxyl active groups on the surface: hydroxyl groups enhance the material's hydrophilicity and promote proton transfer, while cyano groups exhibit electron-attracting characteristics to localize photogenerated electrons. Simultaneously, interlayer intercalation of K<sup>+</sup>&amp;Na<sup>+</sup> forms electron transport channels, synergistically facilitating surface proton transfer and optimizing charge distribution. This multi-component modification strategy significantly enhances the adsorption capacity of O<sub>2</sub>, effectively modulates the 2e<sup>−</sup>ORR pathway, and improves the selectivity of H<sub>2</sub>O<sub>2</sub>, demonstrating its excellent bifunctional properties. Experimental data show that the optimally alkali-activated K<sub>3</sub>&amp;Na<sub>3</sub>-C<sub>3</sub>N<sub>5</sub> achieves a remarkably high H<sub>2</sub>O<sub>2</sub> production rate of 26,920.49 μmol g<sup>−1</sup>·h<sup>−1</sup>— a 90.3-fold increase over unmodified C<sub>3</sub>N<sub>5</sub>. This work pioneers alkali activation as a universal and scalable paradigm for engineering surface-active sites to enable performance amplification through functional group-metal ion cooperativity, and it provides a design blueprint for advanced carbon nitride-based photocatalysts to boost H<sub>2</sub>O<sub>2</sub> fuel cell performance.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"660 \",\"pages\":\"Article 238511\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037877532502347X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877532502347X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水光催化生产过氧化氢被认为是一种环境友好的能源储存和供应技术。本文通过碱激活热聚合成功制备了K+&;Na+共插层并被氰基/羟基修饰的无序K&;Na- c3n5光催化剂。碱活化有效地将氰基和羟基活性基团锚定在表面:羟基增强材料的亲水性,促进质子转移,而氰基则表现出吸引电子的特性,使光生电子局部定位。同时,K+和Na+的层间嵌入形成电子传递通道,协同促进表面质子转移,优化电荷分布。这种多组分改性策略显著提高了对O2的吸附能力,有效调节了2e - ORR途径,提高了对H2O2的选择性,展现了其优异的双功能特性。实验结果表明,碱活化后的K3&;Na3-C3N5的H2O2产率为26,920.49 μmol g−1·h−1,比未改性的C3N5提高了90.3倍。这项工作开创了碱活化作为一种通用的、可扩展的工程表面活性位点范例,通过官能团金属离子的协同性来实现性能放大,并为先进的氮化碳基光催化剂提供了设计蓝图,以提高H2O2燃料电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anchoring of alkali-activated surface reactive groups: Dual-groups modified K+&Na+- intercalated C3N5 for enhanced photocatalytic H2O2 production
Photocatalytic production of hydrogen peroxide from water is regarded as an environmentally benign technology for energy storage and supply. Herein, a disordered K&Na-C3N5 photocatalyst co-intercalated with K+&Na+ and modified by cyano/hydroxyl groups is successfully fabricated via alkali-activated thermal-polymerization. Alkali activation effectively anchors cyano and hydroxyl active groups on the surface: hydroxyl groups enhance the material's hydrophilicity and promote proton transfer, while cyano groups exhibit electron-attracting characteristics to localize photogenerated electrons. Simultaneously, interlayer intercalation of K+&Na+ forms electron transport channels, synergistically facilitating surface proton transfer and optimizing charge distribution. This multi-component modification strategy significantly enhances the adsorption capacity of O2, effectively modulates the 2eORR pathway, and improves the selectivity of H2O2, demonstrating its excellent bifunctional properties. Experimental data show that the optimally alkali-activated K3&Na3-C3N5 achieves a remarkably high H2O2 production rate of 26,920.49 μmol g−1·h−1— a 90.3-fold increase over unmodified C3N5. This work pioneers alkali activation as a universal and scalable paradigm for engineering surface-active sites to enable performance amplification through functional group-metal ion cooperativity, and it provides a design blueprint for advanced carbon nitride-based photocatalysts to boost H2O2 fuel cell performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信