基于高压和超临界试验,定量分析了不同环境因素下高岭石对CO2的吸附

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Xianfeng Ma , Guohang Tang , Jianglin Cao , Haihua Zhang , Mingyang Cao
{"title":"基于高压和超临界试验,定量分析了不同环境因素下高岭石对CO2的吸附","authors":"Xianfeng Ma ,&nbsp;Guohang Tang ,&nbsp;Jianglin Cao ,&nbsp;Haihua Zhang ,&nbsp;Mingyang Cao","doi":"10.1016/j.colsurfa.2025.138555","DOIUrl":null,"url":null,"abstract":"<div><div>Kaolinite, a prevalent clay mineral, demonstrates potential for CO<sub>2</sub> capture and geological sequestration. This research analyzed how moisture levels and temperature influence CO<sub>2</sub> adsorption in kaolinite using high-pressure and supercritical adsorption experiments. Nitrogen adsorption tests examined pore structure variations in kaolinite before and after CO<sub>2</sub> adsorption across different environmental conditions. X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy characterized mineral composition and elemental distribution changes in raw kaolinite and CO<sub>2</sub>-exposed samples under both dry and wet conditions. Findings indicate that higher moisture content reduces CO<sub>2</sub> adsorption capacity and modifies isosteric heat of adsorption in kaolinite. Elevated temperature and humidity also altered specific surface area, pore volume, and average pore size post-adsorption. Most significantly, this study identifies a critical moisture threshold (∼15 %) for pore stability and reveals the dual role of mineralogical changes in governing both structural integrity and long-term chemical trapping. These findings provide transformative insights for predicting and optimizing the security of geological CO<sub>2</sub> sequestration.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"728 ","pages":"Article 138555"},"PeriodicalIF":5.4000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of CO2 adsorption on kaolinite under different environmental factors based on high-pressure and supercritical tests\",\"authors\":\"Xianfeng Ma ,&nbsp;Guohang Tang ,&nbsp;Jianglin Cao ,&nbsp;Haihua Zhang ,&nbsp;Mingyang Cao\",\"doi\":\"10.1016/j.colsurfa.2025.138555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kaolinite, a prevalent clay mineral, demonstrates potential for CO<sub>2</sub> capture and geological sequestration. This research analyzed how moisture levels and temperature influence CO<sub>2</sub> adsorption in kaolinite using high-pressure and supercritical adsorption experiments. Nitrogen adsorption tests examined pore structure variations in kaolinite before and after CO<sub>2</sub> adsorption across different environmental conditions. X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy characterized mineral composition and elemental distribution changes in raw kaolinite and CO<sub>2</sub>-exposed samples under both dry and wet conditions. Findings indicate that higher moisture content reduces CO<sub>2</sub> adsorption capacity and modifies isosteric heat of adsorption in kaolinite. Elevated temperature and humidity also altered specific surface area, pore volume, and average pore size post-adsorption. Most significantly, this study identifies a critical moisture threshold (∼15 %) for pore stability and reveals the dual role of mineralogical changes in governing both structural integrity and long-term chemical trapping. These findings provide transformative insights for predicting and optimizing the security of geological CO<sub>2</sub> sequestration.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"728 \",\"pages\":\"Article 138555\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775725024598\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725024598","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高岭石是一种普遍存在的粘土矿物,具有捕获和地质封存二氧化碳的潜力。本研究通过高压和超临界吸附实验,分析了湿度和温度对高岭石中CO2吸附的影响。氮气吸附试验研究了不同环境条件下高岭石吸附CO2前后孔隙结构的变化。x射线衍射、扫描电镜和能量色散x射线能谱分析了干燥和潮湿条件下高岭石原料和co2暴露样品的矿物组成和元素分布变化。研究结果表明,较高的水分含量降低了高岭石对CO2的吸附能力,改变了高岭石的等等吸附热。升高的温度和湿度也改变了吸附后的比表面积、孔体积和平均孔径。最重要的是,本研究确定了孔隙稳定性的临界水分阈值(~ 15 %),并揭示了矿物学变化在控制结构完整性和长期化学俘获方面的双重作用。这些发现为预测和优化地质CO2封存的安全性提供了变革性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative analysis of CO2 adsorption on kaolinite under different environmental factors based on high-pressure and supercritical tests
Kaolinite, a prevalent clay mineral, demonstrates potential for CO2 capture and geological sequestration. This research analyzed how moisture levels and temperature influence CO2 adsorption in kaolinite using high-pressure and supercritical adsorption experiments. Nitrogen adsorption tests examined pore structure variations in kaolinite before and after CO2 adsorption across different environmental conditions. X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy characterized mineral composition and elemental distribution changes in raw kaolinite and CO2-exposed samples under both dry and wet conditions. Findings indicate that higher moisture content reduces CO2 adsorption capacity and modifies isosteric heat of adsorption in kaolinite. Elevated temperature and humidity also altered specific surface area, pore volume, and average pore size post-adsorption. Most significantly, this study identifies a critical moisture threshold (∼15 %) for pore stability and reveals the dual role of mineralogical changes in governing both structural integrity and long-term chemical trapping. These findings provide transformative insights for predicting and optimizing the security of geological CO2 sequestration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信