E.E. Timofeeva, E.Yu. Panchenko, N.Yu. Surikov, M.V. Zherdeva, Yu.I. Chumlyakov
{"title":"化学成分对NiFeGaCo合金马氏体相变、显微组织和超弹性的影响","authors":"E.E. Timofeeva, E.Yu. Panchenko, N.Yu. Surikov, M.V. Zherdeva, Yu.I. Chumlyakov","doi":"10.1016/j.matlet.2025.139624","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical composition influences the microstructure, phase composition, martensitic transformation temperatures, and superelasticity of NiFeGaCo alloys. Ni<sub>47.5</sub>Fe<sub>16</sub>Ga<sub>26.5</sub>Co<sub>10</sub> and Ni<sub>47.5</sub>Fe<sub>15</sub>Ga<sub>27.5</sub>Co<sub>10</sub> alloys exhibited high martensitic transformation temperatures (M<sub>s</sub> > 330 K). A [001]-oriented Ni<sub>47.5</sub>Fe<sub>16</sub>Ga<sub>26.5</sub>Co<sub>10</sub> single crystal contained a large volume fraction of γ-phase (15 %–20 %), which prevents full reversibility, and superelasticity was observed in a narrow temperature range (423–523 K) with a small reversible strain of 1.5 % and wide stress hysteresis (300 MPa). In contrast, the single-phase Ni<sub>47.5</sub>Fe<sub>15</sub>Ga<sub>27.5</sub>Co<sub>10</sub> single crystal demonstrated high-temperature superelasticity over a wide temperature range (from 373 to 573 K and above) with a large reversible strain (up to 5.5 %), low critical stresses (from 37 MPa at 373 K), and a narrow stress hysteresis (from 25 MPa at 373 K).</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"404 ","pages":"Article 139624"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of the chemical composition on martensitic transformation, microstructure and superelasticity in NiFeGaCo alloys\",\"authors\":\"E.E. Timofeeva, E.Yu. Panchenko, N.Yu. Surikov, M.V. Zherdeva, Yu.I. Chumlyakov\",\"doi\":\"10.1016/j.matlet.2025.139624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The chemical composition influences the microstructure, phase composition, martensitic transformation temperatures, and superelasticity of NiFeGaCo alloys. Ni<sub>47.5</sub>Fe<sub>16</sub>Ga<sub>26.5</sub>Co<sub>10</sub> and Ni<sub>47.5</sub>Fe<sub>15</sub>Ga<sub>27.5</sub>Co<sub>10</sub> alloys exhibited high martensitic transformation temperatures (M<sub>s</sub> > 330 K). A [001]-oriented Ni<sub>47.5</sub>Fe<sub>16</sub>Ga<sub>26.5</sub>Co<sub>10</sub> single crystal contained a large volume fraction of γ-phase (15 %–20 %), which prevents full reversibility, and superelasticity was observed in a narrow temperature range (423–523 K) with a small reversible strain of 1.5 % and wide stress hysteresis (300 MPa). In contrast, the single-phase Ni<sub>47.5</sub>Fe<sub>15</sub>Ga<sub>27.5</sub>Co<sub>10</sub> single crystal demonstrated high-temperature superelasticity over a wide temperature range (from 373 to 573 K and above) with a large reversible strain (up to 5.5 %), low critical stresses (from 37 MPa at 373 K), and a narrow stress hysteresis (from 25 MPa at 373 K).</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"404 \",\"pages\":\"Article 139624\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25016544\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25016544","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The influence of the chemical composition on martensitic transformation, microstructure and superelasticity in NiFeGaCo alloys
The chemical composition influences the microstructure, phase composition, martensitic transformation temperatures, and superelasticity of NiFeGaCo alloys. Ni47.5Fe16Ga26.5Co10 and Ni47.5Fe15Ga27.5Co10 alloys exhibited high martensitic transformation temperatures (Ms > 330 K). A [001]-oriented Ni47.5Fe16Ga26.5Co10 single crystal contained a large volume fraction of γ-phase (15 %–20 %), which prevents full reversibility, and superelasticity was observed in a narrow temperature range (423–523 K) with a small reversible strain of 1.5 % and wide stress hysteresis (300 MPa). In contrast, the single-phase Ni47.5Fe15Ga27.5Co10 single crystal demonstrated high-temperature superelasticity over a wide temperature range (from 373 to 573 K and above) with a large reversible strain (up to 5.5 %), low critical stresses (from 37 MPa at 373 K), and a narrow stress hysteresis (from 25 MPa at 373 K).
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive