时间限制下的潘多拉盒子问题

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Georgios Amanatidis , Ben Berger , Tomer Ezra , Michal Feldman , Federico Fusco , Rebecca Reiffenhäuser , Artem Tsikiridis
{"title":"时间限制下的潘多拉盒子问题","authors":"Georgios Amanatidis ,&nbsp;Ben Berger ,&nbsp;Tomer Ezra ,&nbsp;Michal Feldman ,&nbsp;Federico Fusco ,&nbsp;Rebecca Reiffenhäuser ,&nbsp;Artem Tsikiridis","doi":"10.1016/j.artint.2025.104426","DOIUrl":null,"url":null,"abstract":"<div><div>The Pandora's Box problem models the search for the best alternative when evaluation is costly. In the simplest variant, a decision maker is presented with <em>n</em> boxes, each associated with a cost of inspection and a hidden random reward. The decision maker inspects a subset of these boxes one after the other, in a possibly adaptive order, and gains the difference between the largest revealed reward and the sum of the inspection costs. Although this classic version is well understood (Weitzman 1979), there is a flourishing recent literature on variants of the problem. Here we introduce a general framework—the Pandora's Box Over Time problem—that captures a wide range of variants where time plays a role, e.g., by constraining the schedules of exploration and influencing costs and rewards. In our framework, boxes have time-dependent rewards and costs, whereas inspection may require a box-specific processing time. Moreover, once a box is inspected, its reward may deteriorate over time. Our main result is an efficient constant-factor approximation to the optimal strategy for the Pandora's Box Over Time problem, which is generally NP-hard to compute. We further obtain improved results for the natural special cases where boxes have no processing time, boxes are available only in specific time slots, or when costs and reward distributions are time-independent (but rewards may still deteriorate after inspection).</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"349 ","pages":"Article 104426"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pandora's box problem with time constraints\",\"authors\":\"Georgios Amanatidis ,&nbsp;Ben Berger ,&nbsp;Tomer Ezra ,&nbsp;Michal Feldman ,&nbsp;Federico Fusco ,&nbsp;Rebecca Reiffenhäuser ,&nbsp;Artem Tsikiridis\",\"doi\":\"10.1016/j.artint.2025.104426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Pandora's Box problem models the search for the best alternative when evaluation is costly. In the simplest variant, a decision maker is presented with <em>n</em> boxes, each associated with a cost of inspection and a hidden random reward. The decision maker inspects a subset of these boxes one after the other, in a possibly adaptive order, and gains the difference between the largest revealed reward and the sum of the inspection costs. Although this classic version is well understood (Weitzman 1979), there is a flourishing recent literature on variants of the problem. Here we introduce a general framework—the Pandora's Box Over Time problem—that captures a wide range of variants where time plays a role, e.g., by constraining the schedules of exploration and influencing costs and rewards. In our framework, boxes have time-dependent rewards and costs, whereas inspection may require a box-specific processing time. Moreover, once a box is inspected, its reward may deteriorate over time. Our main result is an efficient constant-factor approximation to the optimal strategy for the Pandora's Box Over Time problem, which is generally NP-hard to compute. We further obtain improved results for the natural special cases where boxes have no processing time, boxes are available only in specific time slots, or when costs and reward distributions are time-independent (but rewards may still deteriorate after inspection).</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"349 \",\"pages\":\"Article 104426\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225001456\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001456","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

潘多拉的盒子问题模拟了当评估成本很高时寻找最佳替代方案的过程。在最简单的变体中,决策者面前有n个盒子,每个盒子都与检查成本和隐藏的随机奖励相关。决策者一个接一个地检查这些盒子的子集,以可能自适应的顺序,并获得最大显示奖励和检查成本总和之间的差值。虽然这个经典的版本被很好地理解(Weitzman 1979),但最近有大量关于这个问题变体的文献。在这里,我们将介绍一个通用的框架——潘多拉盒子随时间推移的问题——它捕获了时间发挥作用的各种变体,例如,通过限制探索时间表和影响成本和奖励。在我们的框架中,箱子具有与时间相关的奖励和成本,而检查可能需要特定于箱子的处理时间。此外,一旦盒子被检查,它的奖励可能会随着时间的推移而恶化。我们的主要结果是对潘多拉盒子随时间推移问题的最佳策略的有效常数因子近似值,这通常是np难以计算的。我们进一步得到了自然特殊情况下的改进结果,其中箱子没有处理时间,箱子只在特定的时间段可用,或者成本和奖励分布与时间无关(但检查后奖励仍然可能恶化)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pandora's box problem with time constraints
The Pandora's Box problem models the search for the best alternative when evaluation is costly. In the simplest variant, a decision maker is presented with n boxes, each associated with a cost of inspection and a hidden random reward. The decision maker inspects a subset of these boxes one after the other, in a possibly adaptive order, and gains the difference between the largest revealed reward and the sum of the inspection costs. Although this classic version is well understood (Weitzman 1979), there is a flourishing recent literature on variants of the problem. Here we introduce a general framework—the Pandora's Box Over Time problem—that captures a wide range of variants where time plays a role, e.g., by constraining the schedules of exploration and influencing costs and rewards. In our framework, boxes have time-dependent rewards and costs, whereas inspection may require a box-specific processing time. Moreover, once a box is inspected, its reward may deteriorate over time. Our main result is an efficient constant-factor approximation to the optimal strategy for the Pandora's Box Over Time problem, which is generally NP-hard to compute. We further obtain improved results for the natural special cases where boxes have no processing time, boxes are available only in specific time slots, or when costs and reward distributions are time-independent (but rewards may still deteriorate after inspection).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信