用于高性能超级电容器的类晶态氮氧共掺杂层次化多孔碳材料

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Jian Song , Tao Wang , Yulong Yang , Shuijian He , Boan Wu , Chunmei Zhang , Zhenlu Liu , Min Ru , Haoqi Yang , Qian Zhang
{"title":"用于高性能超级电容器的类晶态氮氧共掺杂层次化多孔碳材料","authors":"Jian Song ,&nbsp;Tao Wang ,&nbsp;Yulong Yang ,&nbsp;Shuijian He ,&nbsp;Boan Wu ,&nbsp;Chunmei Zhang ,&nbsp;Zhenlu Liu ,&nbsp;Min Ru ,&nbsp;Haoqi Yang ,&nbsp;Qian Zhang","doi":"10.1016/j.colsurfa.2025.138513","DOIUrl":null,"url":null,"abstract":"<div><div>Supercapacitors exhibit important application value in new energy vehicles, smart grids, and wearable devices due to their high-power density, long cycle life, and wide temperature adaptability. However, the core bottleneck lies in traditional carbon-based electrode materials suffering from inefficient pore structures, surface chemical inertness, and unsustainable preparation processes. Here, we successfully constructed <em>Celosia cristata</em> L.-like N, O co-doped porous carbon electrode materials by simple high-temperature pyrolysis, using histidine as both the carbon precursor and self-doping source, and combining with the structure directing agent (zinc acetate) to modulate homogeneous dispersion of Zn<sup>2+</sup> through coordination chemistry. The optimized carbonaceous products exhibited mesoporous network structure (specific surface area of 1145 m<sup>2</sup> g<sup>−1</sup>), with a high specific capacitance of 241 F g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup>. The assembled symmetric supercapacitor demonstrates excellent electrochemical performance, maintaining 80 F g<sup>−1</sup> at a high current density of 20 A g<sup>−1</sup> and a capacity retention of 96.7 % after 40,000 cycles at 5 A g<sup>−1</sup>. This strategy enables molecular-scale anchoring coordination of metal ions through precise design of biomass molecules, effectively solving the problem of pore structure damage caused by metal aggregation in traditional templating methods. It provides a universal solution for developing high-performance, low-cost, and eco-friendly supercapacitor electrode materials.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"728 ","pages":"Article 138513"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Celosia cristata L.-like N, O co-doped hierarchical porous carbon materials for high performance supercapacitor\",\"authors\":\"Jian Song ,&nbsp;Tao Wang ,&nbsp;Yulong Yang ,&nbsp;Shuijian He ,&nbsp;Boan Wu ,&nbsp;Chunmei Zhang ,&nbsp;Zhenlu Liu ,&nbsp;Min Ru ,&nbsp;Haoqi Yang ,&nbsp;Qian Zhang\",\"doi\":\"10.1016/j.colsurfa.2025.138513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Supercapacitors exhibit important application value in new energy vehicles, smart grids, and wearable devices due to their high-power density, long cycle life, and wide temperature adaptability. However, the core bottleneck lies in traditional carbon-based electrode materials suffering from inefficient pore structures, surface chemical inertness, and unsustainable preparation processes. Here, we successfully constructed <em>Celosia cristata</em> L.-like N, O co-doped porous carbon electrode materials by simple high-temperature pyrolysis, using histidine as both the carbon precursor and self-doping source, and combining with the structure directing agent (zinc acetate) to modulate homogeneous dispersion of Zn<sup>2+</sup> through coordination chemistry. The optimized carbonaceous products exhibited mesoporous network structure (specific surface area of 1145 m<sup>2</sup> g<sup>−1</sup>), with a high specific capacitance of 241 F g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup>. The assembled symmetric supercapacitor demonstrates excellent electrochemical performance, maintaining 80 F g<sup>−1</sup> at a high current density of 20 A g<sup>−1</sup> and a capacity retention of 96.7 % after 40,000 cycles at 5 A g<sup>−1</sup>. This strategy enables molecular-scale anchoring coordination of metal ions through precise design of biomass molecules, effectively solving the problem of pore structure damage caused by metal aggregation in traditional templating methods. It provides a universal solution for developing high-performance, low-cost, and eco-friendly supercapacitor electrode materials.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"728 \",\"pages\":\"Article 138513\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775725024173\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725024173","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器具有功率密度高、循环寿命长、温度适应性广等优点,在新能源汽车、智能电网、可穿戴设备等领域具有重要的应用价值。然而,核心瓶颈在于传统的碳基电极材料存在低效的孔隙结构、表面化学惰性和不可持续的制备过程。本课题以组氨酸为碳前驱体和自掺杂源,结合结构导向剂(醋酸锌)通过配位化学调节Zn2+的均匀分散,通过简单的高温热解方法成功构建了鸡冠草l -like N, O共掺杂多孔碳电极材料。优化后的碳质产物具有介孔网络结构(比表面积为1145 m2 g−1),在0.1 a g−1电流密度下具有241 F g−1的高比电容。组装的对称超级电容器具有优异的电化学性能,在20 a g−1的高电流密度下保持80 F g−1,在5 a g−1下循环40,000次后容量保持率为96.7 %。该策略通过对生物质分子的精确设计,实现了金属离子的分子尺度锚定配位,有效解决了传统模板方法中金属聚集造成的孔结构破坏问题。它为开发高性能、低成本和环保的超级电容器电极材料提供了一个通用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Celosia cristata L.-like N, O co-doped hierarchical porous carbon materials for high performance supercapacitor
Supercapacitors exhibit important application value in new energy vehicles, smart grids, and wearable devices due to their high-power density, long cycle life, and wide temperature adaptability. However, the core bottleneck lies in traditional carbon-based electrode materials suffering from inefficient pore structures, surface chemical inertness, and unsustainable preparation processes. Here, we successfully constructed Celosia cristata L.-like N, O co-doped porous carbon electrode materials by simple high-temperature pyrolysis, using histidine as both the carbon precursor and self-doping source, and combining with the structure directing agent (zinc acetate) to modulate homogeneous dispersion of Zn2+ through coordination chemistry. The optimized carbonaceous products exhibited mesoporous network structure (specific surface area of 1145 m2 g−1), with a high specific capacitance of 241 F g−1 at a current density of 0.1 A g−1. The assembled symmetric supercapacitor demonstrates excellent electrochemical performance, maintaining 80 F g−1 at a high current density of 20 A g−1 and a capacity retention of 96.7 % after 40,000 cycles at 5 A g−1. This strategy enables molecular-scale anchoring coordination of metal ions through precise design of biomass molecules, effectively solving the problem of pore structure damage caused by metal aggregation in traditional templating methods. It provides a universal solution for developing high-performance, low-cost, and eco-friendly supercapacitor electrode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信