基于逐帧处理的多模态肢体语言特征识别与融合机器人热舒适监测系统

IF 7.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Chia-Yi Lin, Yi Zhang
{"title":"基于逐帧处理的多模态肢体语言特征识别与融合机器人热舒适监测系统","authors":"Chia-Yi Lin,&nbsp;Yi Zhang","doi":"10.1016/j.buildenv.2025.113814","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time thermal comfort estimation is crucial for managing occupant well-being in intelligent indoor environments. This study proposes a multimodal body language-integrated real-time thermal comfort monitoring (MRTM) system to dynamically estimate the thermal comfort distribution of multiple occupants within a built space. To realize dynamic multimodal feature fusion in complex scenes with multiple persons, we developed a frame-by-frame multibody language feature recognition module for cross-frame posture association based on SlowFast networks. We combined the module with Fanger’s predicted mean vote model to dynamically match environmental parameters and individual characteristics, generating a three-dimensional PMV mesh model. The system was experimentally validated in a university research institute lobby 143.2 m² in Shenzhen, China, using occupant flow data collected from students and staff total of 1269 exhibiting diverse behaviors such as sitting, standing, and walking. The MRTM system achieved high accuracy rates in sex, emotion, clothing, and behavior recognition 95.14 %, 96.64 %, 92.15 %, and 96.26 %, respectively. The system attained a ROC-AUC score of 0.874 in real-time estimation of occupants’ thermal comfort, thereby providing evidence of its robustness and effectiveness in analyzing thermal comfort within the environment.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"287 ","pages":"Article 113814"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame-by-frame processing-based robot system integrating multimodal body language feature recognition and fusion for thermal comfort monitoring\",\"authors\":\"Chia-Yi Lin,&nbsp;Yi Zhang\",\"doi\":\"10.1016/j.buildenv.2025.113814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time thermal comfort estimation is crucial for managing occupant well-being in intelligent indoor environments. This study proposes a multimodal body language-integrated real-time thermal comfort monitoring (MRTM) system to dynamically estimate the thermal comfort distribution of multiple occupants within a built space. To realize dynamic multimodal feature fusion in complex scenes with multiple persons, we developed a frame-by-frame multibody language feature recognition module for cross-frame posture association based on SlowFast networks. We combined the module with Fanger’s predicted mean vote model to dynamically match environmental parameters and individual characteristics, generating a three-dimensional PMV mesh model. The system was experimentally validated in a university research institute lobby 143.2 m² in Shenzhen, China, using occupant flow data collected from students and staff total of 1269 exhibiting diverse behaviors such as sitting, standing, and walking. The MRTM system achieved high accuracy rates in sex, emotion, clothing, and behavior recognition 95.14 %, 96.64 %, 92.15 %, and 96.26 %, respectively. The system attained a ROC-AUC score of 0.874 in real-time estimation of occupants’ thermal comfort, thereby providing evidence of its robustness and effectiveness in analyzing thermal comfort within the environment.</div></div>\",\"PeriodicalId\":9273,\"journal\":{\"name\":\"Building and Environment\",\"volume\":\"287 \",\"pages\":\"Article 113814\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360132325012843\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132325012843","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在智能室内环境中,实时热舒适评估对于管理居住者的健康至关重要。本研究提出了一种多模态身体语言集成实时热舒适监测(MRTM)系统,用于动态估计建筑空间内多人的热舒适分布。为实现多人复杂场景下的动态多模态特征融合,开发了基于SlowFast网络的逐帧多体语言跨帧姿态关联特征识别模块。我们将该模块与Fanger的预测平均投票模型相结合,动态匹配环境参数和个体特征,生成三维PMV网格模型。该系统在中国深圳一所143.2平方米的大学研究机构大厅进行了实验验证,使用了1269名学生和工作人员的占用流量数据,这些数据显示了不同的行为,如坐、站和走。MRTM系统在性别、情绪、衣着和行为识别方面的准确率分别为95.14%、96.64%、92.15%和96.26%。该系统在实时估计乘员热舒适方面的ROC-AUC得分为0.874,从而证明了其在分析环境内热舒适方面的稳健性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame-by-frame processing-based robot system integrating multimodal body language feature recognition and fusion for thermal comfort monitoring
Real-time thermal comfort estimation is crucial for managing occupant well-being in intelligent indoor environments. This study proposes a multimodal body language-integrated real-time thermal comfort monitoring (MRTM) system to dynamically estimate the thermal comfort distribution of multiple occupants within a built space. To realize dynamic multimodal feature fusion in complex scenes with multiple persons, we developed a frame-by-frame multibody language feature recognition module for cross-frame posture association based on SlowFast networks. We combined the module with Fanger’s predicted mean vote model to dynamically match environmental parameters and individual characteristics, generating a three-dimensional PMV mesh model. The system was experimentally validated in a university research institute lobby 143.2 m² in Shenzhen, China, using occupant flow data collected from students and staff total of 1269 exhibiting diverse behaviors such as sitting, standing, and walking. The MRTM system achieved high accuracy rates in sex, emotion, clothing, and behavior recognition 95.14 %, 96.64 %, 92.15 %, and 96.26 %, respectively. The system attained a ROC-AUC score of 0.874 in real-time estimation of occupants’ thermal comfort, thereby providing evidence of its robustness and effectiveness in analyzing thermal comfort within the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信