多能互补微电网中分布式柔性沼气厂负荷平衡的双级调度模型:基于数据驱动和机制的混合方法

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-10-10 DOI:10.1016/j.fuel.2025.137043
Yiyun Liu , Rongqi Wu , Jianjun Li , Yang Sun , Yuanjie Zhang , Shihua Zhang , Shisheng Wang , Guanghong Sheng
{"title":"多能互补微电网中分布式柔性沼气厂负荷平衡的双级调度模型:基于数据驱动和机制的混合方法","authors":"Yiyun Liu ,&nbsp;Rongqi Wu ,&nbsp;Jianjun Li ,&nbsp;Yang Sun ,&nbsp;Yuanjie Zhang ,&nbsp;Shihua Zhang ,&nbsp;Shisheng Wang ,&nbsp;Guanghong Sheng","doi":"10.1016/j.fuel.2025.137043","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a bi-level dispatching model for coordinating flexible biogas plants operating to support wind/solar load balancing within a regional microgrid. The upper-layer model employs a dual-objective optimization to generate the optimal biogas dispatching scheme for each biogas plant, while the sub-layer utilizes a BP-PID control model to enable flexible biogas production and adjust feeding schedule accordingly to track the desired biogas demand curve. An LSTM-enhanced Gompertz model is integrated into the controller to capture the relationship between the real-time feeding input and biogas demand response, leveraging a hybrid data and mechanistic-driven approach to combine empirical adaptability with physical interpretability. The experimental results confirm the model’s predictive accuracy and precision, and demonstrate that the system can achieve flexible biogas production while maintaining improved process stability. This approach is expected to enhance the disturbance resilience of flexible biogas production under complex microgrid conditions, thereby maintaining stable system operation, promoting the degradation of organic pollutants, and providing theoretical and technical support for practical applications.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"406 ","pages":"Article 137043"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bi-level dispatching model for load-balancing of distributed-flexible biogas plants in multi-energy complementary microgrid: A hybrid data-driven and mechanism-based approach\",\"authors\":\"Yiyun Liu ,&nbsp;Rongqi Wu ,&nbsp;Jianjun Li ,&nbsp;Yang Sun ,&nbsp;Yuanjie Zhang ,&nbsp;Shihua Zhang ,&nbsp;Shisheng Wang ,&nbsp;Guanghong Sheng\",\"doi\":\"10.1016/j.fuel.2025.137043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a bi-level dispatching model for coordinating flexible biogas plants operating to support wind/solar load balancing within a regional microgrid. The upper-layer model employs a dual-objective optimization to generate the optimal biogas dispatching scheme for each biogas plant, while the sub-layer utilizes a BP-PID control model to enable flexible biogas production and adjust feeding schedule accordingly to track the desired biogas demand curve. An LSTM-enhanced Gompertz model is integrated into the controller to capture the relationship between the real-time feeding input and biogas demand response, leveraging a hybrid data and mechanistic-driven approach to combine empirical adaptability with physical interpretability. The experimental results confirm the model’s predictive accuracy and precision, and demonstrate that the system can achieve flexible biogas production while maintaining improved process stability. This approach is expected to enhance the disturbance resilience of flexible biogas production under complex microgrid conditions, thereby maintaining stable system operation, promoting the degradation of organic pollutants, and providing theoretical and technical support for practical applications.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"406 \",\"pages\":\"Article 137043\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125027681\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125027681","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个双级调度模型,用于协调灵活的沼气发电厂运行,以支持区域微电网内的风能/太阳能负载平衡。上层模型采用双目标优化,生成各沼气厂最优的沼气调度方案,子层采用BP-PID控制模型,实现灵活的沼气生产,并根据需要调整投料计划,跟踪所需的沼气需求曲线。控制器中集成了lstm增强的Gompertz模型,以捕获实时投饲料输入与沼气需求响应之间的关系,利用混合数据和机械驱动方法将经验适应性与物理可解释性相结合。实验结果证实了该模型的预测准确性和精度,并表明该系统可以实现柔性沼气生产,同时保持较高的工艺稳定性。该方法有望增强复杂微网条件下柔性沼气生产的抗干扰能力,从而保持系统稳定运行,促进有机污染物的降解,为实际应用提供理论和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A bi-level dispatching model for load-balancing of distributed-flexible biogas plants in multi-energy complementary microgrid: A hybrid data-driven and mechanism-based approach

A bi-level dispatching model for load-balancing of distributed-flexible biogas plants in multi-energy complementary microgrid: A hybrid data-driven and mechanism-based approach
This study proposes a bi-level dispatching model for coordinating flexible biogas plants operating to support wind/solar load balancing within a regional microgrid. The upper-layer model employs a dual-objective optimization to generate the optimal biogas dispatching scheme for each biogas plant, while the sub-layer utilizes a BP-PID control model to enable flexible biogas production and adjust feeding schedule accordingly to track the desired biogas demand curve. An LSTM-enhanced Gompertz model is integrated into the controller to capture the relationship between the real-time feeding input and biogas demand response, leveraging a hybrid data and mechanistic-driven approach to combine empirical adaptability with physical interpretability. The experimental results confirm the model’s predictive accuracy and precision, and demonstrate that the system can achieve flexible biogas production while maintaining improved process stability. This approach is expected to enhance the disturbance resilience of flexible biogas production under complex microgrid conditions, thereby maintaining stable system operation, promoting the degradation of organic pollutants, and providing theoretical and technical support for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信